Robert H. Clark

TABLE III					
KBrO ₃ , 20.5;		KI, 197.3;		HCl, 95.15	
t	x	x'	$R_0 \times 10^4$	K × 10 ¹³	
5	0.45	0.454	908	97	
IO	0.90	0.915	915	98	
20	1.80	1.80	930	99	
30	2.75	2.88	900	102	
45	3.99	4.30	955	102	
60	5.22	5.73	955	102	
90.	7.53	8.00	902	102	
Average value, $R_o = 936 \times 10^{-4}$					
TABLE IV					
$KBrO_s$, 20.5;		KI, 98.67;		HCl, 190.3	
t	x	x'	$R_0 imes 10^4$	K×10 ¹³	
5	0.92	0.934	1860	100	
10	1.85	1.91	1910	102	
20	3.62	3.74	1870	100	
30	5.39	5.91	1970	105	
45	7.75	8.87	1970	105	
60	9.76	11.60	1930	102	
90	13.93	18.01	20 00	106	
Ave	Average value, $R_{a} = 1930 \times 10^{-4}$				

Effect of Chiorion and of Atmospheric Oxygen on the Rate

In order to assure myself that the effect of the hydrochloric acid was due entirely to the concentration of the hydrion I made some measurements in which the concentration of the chlorion was doubled by adding sodium chloride. The rate was the same as in the absence of the salt. The addition of very large quantities of potassium chloride, however, retards the oxidation, see Tables IX and X and p. 688.

To find whether the results were affected by access of air,¹ I made some preliminary measurements in duplicate, one of each pair under ordinary conditions, and the other in an atmosphere of earefully purified carbon dioxide.² I

¹ Compare Zeit. phys. Chem., 2, 103 (1888), and Gazz. chim. Ital., 20, 382 (1890).

¹ See Dushman : Jonr. Phys. Chem., 8 (1904).

684