mine the latent heat of fusion of ice. to show that the radiating power of a Illustrate by a numerical example. heated body depends upon the nature

8. Describe two distinct experiments of the surface of this body.

FORM 111., 1808.

W. P. MUCKLE, B.A., Toronto.

8. (a) Noticing that $3\sqrt{2} - 2\sqrt{5} = (3 - \sqrt{6})\sqrt{2}$ we have

$$\frac{3\sqrt{2+3}}{3-\sqrt{6}} - \frac{2\sqrt{3+6}}{3\sqrt{2-2}\sqrt{3}} = \frac{\sqrt{2(3\sqrt{2+3}) - (2\sqrt{3+6})}}{3\sqrt{2-2}\sqrt{3}} = 1.$$

(b)
$$\left(\frac{a^x + a^{-x}}{2}\right)^2 + \left(\frac{a^x - a^{-x}}{2\sqrt{-1}}\right)^2 = \frac{a^{2x} + a^{-x} + 2}{4} + \frac{a^{2x} + a^{-2x} - 2}{-4} = 1.$$

- 9. This question admits of a neater solution by arithmetic than by algebra, For an algebraical solution:
- (a) Let x=time elapsed when going in the same direction. A goes 1 more lap than B. $\therefore \frac{x}{12} \frac{x}{14^2} = 1$, from which x=72'.
 - (b) In going in opposite directions they go together 1 lap.

$$\therefore \frac{x}{12} + \frac{x}{14\frac{2}{5}} = 1$$
, or $x = 6\frac{6}{16}$.

to. Book-work.

11. $x^2-2(a+y)x+ay$ is a complete square if $x^2-2(a+y)x+ay=0$ has equal roots; that is, if $\left\{-2(a+y)\right\}_{1}^{2}=4.1$. ay, and $y^2+ay+a^2=0$.

Solving for y,
$$y = \frac{a}{2} \left\{ \frac{-1 \pm \sqrt{-3}}{2} \right\}$$

12. Let x=one side. Let d=difference of sides. Let e=diagonal.

$$x^2 + (x+d)^2 = e^2$$
, $2x^2 + 2dx + d^2 = e^2$.

Solving for x we have $x = \frac{-d \pm \sqrt{2 \cdot ^2 - c^2}}{2}$. $x + d = \frac{d \pm \sqrt{2e^2 - d^2}}{2}$

13.
$$x^4 + x^2 y^2 + y^4 = 741$$
 (1) $x^2 + xy + y^2 = 39$ (2)

(1): (2) gives
$$x^2 - xy + y^2 = 19$$
 (3) (2)-(3) gives $xy = 10$ (4) (2)+(4) gives $x+y=\pm 7$ (3)-(4) gives $x-y=\pm 3$

(4) (2) + (4) gives
$$x + y = \pm 7$$

From which $x = \pm 5$ or ± 2 $y = \pm 2$ or ± 5