One cubic foot of air, at 32° F., weighs 1.29 ounces. Air rushes into a void with the velocity a heavy body would acquire by fulling in a homogeneous atmosphere. Air is eight hundred and forty times lighter than water. The atmosphere supports water at thirty-three feet; homogeneous atmosphere, therefore, $33 \times 840 = 27,720$ feet.

A heavy body falling one foot acquires the velocity of eight

feet per second.

Velocities are as the square-roots of their heights; therefore to find the velocity corresponding to any given height, expressed in feet per second, multiply the square root of the height in feet by eight.

For air we have $V = \sqrt{27,720} = 166,493 \times 8 = 1,332$ feet per This, therefore, is the velocity with which common air would rush into a void, or, 79,920 feet per minute; some

say 80,880 ditto.

The thermometer, when first invented, about two hundred years ago, air, spirits of wine, and oil were made use of; but

all these have given way to quicksilver.

Fahrenheit is used in England; Reaumur and the Centigrade thermometers on the continent. The thermometer is on the principle of the expansion and contraction of quicksilver. Plunge it into boiling water, it stands at 2125, and 32° denotes the freezing-point. Between these the space is divided into 180.

Zero (0) is extremely cold; 32° freezing-point; 55° for temperate heat; 76° summer heat; 98° blood heat; 112° fierce heat; 176° spirits of wine boils; 212° water boils; 10 of an

inch in a yard is 120 for 90° Fahrenheit.

Mercury is fourteen times heavier than water; therefore, if the pressure of the atmosphere will balance thirty-four feet of water, it will only balance 1 part of that height of mercury,

viz., a little more than twenty-nine inches.

In the barometer, if the air be dense, the mercury rises in the tube and indicates fine weather; if the air becomes lighter the mercury falls and indicates rain. Standard altitude in England varies between twenty-eight and thirty-one inches; the difference is called the state of variation.

est is a nat abo thir of h 0

requ and four

weig

W hibit deriv an a than

W great draul and o that 1

Wa liquid ounce or ten

Inp one-ha tank, weight the nu one cu