and adjustable along the same, and having a pivoted arm V, provided with a last toe-support N, substantially as described. 5th. In a last-ing-machine, the combination, with a last, and levers having friction pieces, of an under plate H, and a supporting-plate M for the levers, arranged on the under plate, and composed of an adjustable section, and a removable and replaceable section or sections, substantially as described. 6th. In a lasting-machine, the combination, with a vertically movable last, of a reciprocating arm f provided with an adjustable lever $g h$, tor bolding down said last, and a connecting rod C, and actuating-cam A connected to said arm f, substantially as described.
No. 31,856. Lifting Jack. (Oric.)
Pettibone, Mulliken and Company, Chicago, (assignees of Axel A Strom, Austin), Ill., U.S., 1st August, 1889; 5 years.
Claim.-1st. In a lifting-jack, the combination, with the standard A, the lifting-bar B, the lifting and retaining clutches and the operating lever, of a heel l on the lifting-bar, and a chamber H along the back of the standard, confining and guiding the heel, substantially as and for the purpose set forth. 2nd. In a lifting-jack, the combination, with the standard having an expanded portion C, the lifting-bar B, the lifting and retaining clutches and the operating lever, of a hook f on the forward side of the collar of the liftingclutch, and a hanger G pivotally connected at one end with the bifurcated end of the operating lever, and having a slot c at which it engages with the hook f, substantially as described. 3rd. In a lif tingjack baving a standard A provided with an expanded portion C, a lifting-bar B, retaining and lifting clutches D and E, and an operating lever F fulcrumed in the standard and linked to the lifting-clutch, the combination, with the standard, of a guide-collar o, extending the combination, with the standard, of a guide-collar o, extending
across and integral with the expanded portion C of thestandard, subacross and integral with the expanded portion C of thestandard, sub-
stantially as described. 4th. A lifting-jack comprising in counbinastantially as described. 4th. A lifting-jack comprising in counbina-
tion, a slotted standard A, having an expanded portion C containing tion, a slotted standard A, having an expanded portion C containing
a guide-collar o extending aeross and integral with it, recesses in the a guidecollar o extending aeross and integral with it, recesses in the
upper ends of the said expanded portion, an operating lever \mathbf{F} fulcrumed in boxes rigid in the said recesses, a retaining-clutch D, a lifting-oluteh E linked to the operating lever, a guide-ohamber H on the rear side of the standard below the expanded portion thereof, and a lifting-bar B baving a foot r, and a heel l extending into the cham -
ber H, substantially as described.

No. 31,857. Reversible Ratchet Clutch Mechanism. (Mécanisme de renversement dembrayage a rochet.)

William B. Turner, New York, N.Y., and Cornelius C. Beard, Boston, Mass., U.S., 1st August, 1889 ; 5 years.
Claim.-1st. In a reversible ratchet clutch mechanism, a shaft, a shell and a sleeve on the said shaft, combined with two sets of oppositely inclined teeth, and with pawls or latches to co-operate with the said teeth, substantially as described. 2 nd . In a reversible ratchet clutch mechanism, a shaft, a shell and a sleeve on the said shaft, combined with two sets of oppositely inclined teeth, and with gravity pawls or latches to co-operate with the said teeth, s ibstan-
tially as described. 3rd. In a reversible ratchet clutch mechanism, tially as described. 3rd. In a reversible ratchet clutch mechanism,
a shaft and a sleeve provided with oppositely inclined teeth, as $b, b r$, a shaft and a sleeve provided with oppositely inclined teeth, as $b, b r$,
combined with a shell, and a series of pawls pivoted to said shell to co-operate with the said inclined teeth, substantially as deseribed,
No. 31,858. Upright Boiler. (Chaudière verticale.)
The Waterous Engine Works Company. Brantford, Ont. (assignee of Frederick L. Waterous, St. Paul, Minn., U.S.,) 1st August, 1889 ;

5 years.

Claim.-1st. In an upright boiler, a water chamber inclosed around the upper end of the flues by the upper flue sheet and a diaphragm located a little below it, an overflow opening from said chamber above said flue sheet, whereby water is maintained constantly in contact with said flue sheet and the upper ends of the flues, substantially as and for the purposes set forth. 2nd. In an upright boiler, the combination, with the upper flue sheet, of a diaphragm located a little below and enclosing therewith around the upper ends of the Gues, a water space, a supply pipe opening into said chamber, and an eduction pipe leading out therefrom above said flue sheet, substantially as and for the purpose set forth. 3rd. In an upright boiler, a water chamber around the upper ends of the flues formed by a double Water chamber around heperflue sheet, and a diaphragm located a head oonsisting o water supply pipe leading into said chamber, a stand little below it, a water supply pipe leading into said chamber, a stand
pipe opening at its lower end into and extending above said chamber, pipe opening at its lower end into and extending above said chamber,
and an eduction pipe leading out of said stand pipe above the upper and an eduction pipe leading out of said stand pipe above the upper
flue sheet into the lower part of the boiler, substantially as and for the purpose set forth. 4th. In an upright boiler, the combination, with a water chamber around the upper end of the flues formed by a double head consisting of the upper flue sheet, and a diaphragm located a little below it,a water supply pipe leading into said chamber, a stand pipe opening at its lower end into and extending above said chamber, and an eduction pipe leading out of said stand pipe above the upper flue sheet into the lower part of the boiler, of a series of radial tubes secured to the fire box, said tubes opening into and communicating with the water space in the boiler where they are secured to the fire-box, the opposite end of each tube being closed and a dito the fire-box, the opposite end of each tube seing closed and a dividing plate placed interna
for the purposes set forth.
No. 31,859. Rotary Motor Actuated by Elastic Fluid Pressure and Applicable also as Pump. (Moteur rotatif actionné par la pression d'un fuide elastique et pouvant aussi servir de pompe.)
Edward Towlson and William T. Sturgess, Norwioh, Eng., lat August, 1889; 5 years.
Claim.-18t. In a rotary motor (or pump), the combination of two
wheels or hubs mounted to rotate in unison in opposite directions, and
each provided with a single tooth or projection, a recess adjacent to said tooth or projection, and with fine pitched teeth extending nearly around its periphery, the teeth on one piston being in gear with those on the other piston, a casing constructed with a pair of connected chambers wherein said wheels or hubs rotate, and having an upper
inlet passage, a valve chamber in connection therewith, a short port inlet passage, a valve chamber in connection therewith, a short port
or passage connecting said valve chamber with the interior of said or passage connecting said valve chamber with the interior of said
casing, and an ouclet port and passage at its lower side, an expansion valve located within said valve chamber, self-adjusting packing car ried by each of said teeth or projections, and adapted to bear against the interior of said casing, and self-adjusting paoking looated be tween the ends of said wheels or hubs and the adjacent ends of the casing, substantially as herein described for the purpose set forth. 2nd. In a rotary motor (or pump), the combination, of two wheels or hubs mounted upon shafts and arranged to rotate in opposite directions, and each provided with a single tooth or projection, a reoess adjacent to said tooth or projection, and fine pitched teeth extending nearly around its periphery, the teeth on one wheel or hab being in nearly around its periphery, the teeth on one wheel or hub being in
gear with those on the other wheel or hub, a oasing with chambers gear with those on the other wheel or hub, f oasing with chambers
wherein said wheels or hubs rotate, and formed with upper inlet passage and lower outlet passage, packing carried by each tooth or prosage and lower outlet passage, packing carried by each tooth or pro-
jection and adapted to bear against the incier periphery, and ends of jection and adapted to bear against the incier periphery, snd onds of
the casing packing located between the ends of said wheels or hubs the casing packing located between the ends of said wheels or hubs
and the adjacent ends of the casing, and toothed wheels mounted upon said shafts and arranged to cause said piston to rotate in unison, substantially as herein deseribed. 3rd. In a rotary engine (or pump). the combination, of wheels of hubs 1, 2 , each provided with a single tooth or projection 4 , a recess 5 adjacent to said tooth or projection, and with fine pitched teeth 3 partly surrounding its periphery, the teeth on one wheel or hub being arranged to gear with those on the other wheel or hub and form a fluid-tight joint, a casing formed with chambers 7 wherein said pistons rotate in opposite directions, upper inlet passage for motive fluid, cylindrical vaive chainber 15 in connection therewith, a short inlet port or passage 8 connecting said valve chamber with the interior of said casing, and a lower outlet passage, a cylind rical expansion valve 14 within said valve chambor, passage, a cylind rical expansion vaive adjusting packing to form af fuidtight joint between the and seti-adjusting packing to form a fuid-tight joint between the projection and the inner periphery of the casing, and between the
wheels or hubs and adjacent ends of the casing, substantially as herein described. 4th. In a rotary engine (or pump), the oombination of two wheels or hubs adapted to rotato together in unison, with a fluid-tight joint between them, and each provided with a single tooth or projection journalled therein at an angle with a radius line of the piston, and with a recess adjacent to said tooth or projection, and adapted to permit of the passage of the projection of an adjacent piston chambers, wherein said wheels or hubs rotate, and a spring or springs adapted to press the outer ond of each of said teeth or pro-
jections into close contact with the internal surface of said chamber, substantially as herein described for the purpose specifed.

No. 31,860. Machine for Securing Spokes in Wheel Hubs. (Machine à assujétir les rais dans les moyeux.)

William P. Bettendorf, Davenport. Iowa, U.S., 1st August, 1889 ; 5 years.
Claim.-lst. In a spoke fastening machine, a spoke holding clamp J_{3}, in combination with the pivoted header oarrying arm Cr, the eccentric C_{5}, the rod C_{4}, oonnecting the eccentrio and arm, and the yielding hub support B. 2nd. In a spoke fastening mechanism, the pivoted arm Cl provided with a heading tool C to enter a hub, in combination with an eccentrio C_{5}, and a connecting rod C4 mounted the header carrying arm, as shown. 3rd. In a spoke fastening machine, in combination with a heading tool C to enter the hab, the hub sustaining device B, in combination with a supporting
 spring $B 3$ and a depressing lever B5. 4th. In oombination with the
vibratory heading tool C , the hub support B , the vertically sliding vibratory heading tool C, the hub support B, the vertically sliding
head B_{2} having a horizontal sliding connestion with the support B , head B2 having a horizontal siiding connestion with the support B,
the spring C8 to retract the support, the spring B3 to lift the head, and the lever Bs to depress the sime. 5th. In combination with the connected clamp levers $H, H 1$, their operating pitman K, the reciprocating rod $K 1$ connected to the latter, its actuating cam L and the retracting spring. 6th. In a spoke fastening machine, the clamping levers H, Hi, their actuating pitman K, the reciprocating rod $K \mathrm{I}$, the lever K 2 for starting said rod, its aotuating cam L, the cam driving clutch D2 and the olutoh controlling lever K4 operated by the rod as shown, wheroby the initial olosing of the jaws is oasused to set the cam in motion. 7th. In combination with the connected K1 connected to the pitman and provided with a stud K 3 the rod ret raoting spring, the rod operating cam L, its driving clutch Dz and the eluteh operating lever K4 provided with the opening having the clutch operating lever $\mathrm{K}_{4} 4$ provided with K_{4} in both directions. oblique edges, as described, to move the lever K_{4} in both directions.
8th. In a machine for seating metallio spokes, the combination of a 8th. In a machine for seating metalio spokes, the combination of a
heading tool Cl and its operating mechanisin, a spoke clamp H, HI and a clamp operating cam L of irregular form, timed to release the spoke as soon as the heading tool completes its action.

No. 31,861. Flour Bolt. (Blutoir.)

William M. Lucas, Uhrichsville, Ohio, U.S., 1st August, 1889; 5 years.
Claim.-lst. The combination of the outer casing, a reciprocsting sieve, a cleaning frame below the sieve, the upper portion of which
is between the side bars of the sieve and is guided in its vertioal is between the side bars of the sieve and is guided in its vertioal
movements thereby, a bent shaft below the frame and the leather straps secured to the frame and to the sides of the casing. 2nd. The combination of a casing, a partition in one end of the casing, a reoiprocating sieve, one end of which projects over the partition, a frame below the sieve, the upper portion of which is between the side bars of the sieve, and is guided in its vertical movement there-
by, and a bent shaft, one end of which is journaled in the partition by, and a bent shaft, one end of which is journaled in the partition
and the other end in the casing. 3rd. The combination of a reoiand the other end in the casing. below the sieve, the upper portion prooating sieve, a cleaning frame below the sieve, the upper portion
of which is between the side bars of the sieve, and is guided in its

