$1.5=\$ 1.5225 . \quad . \quad$ He holds I .015 shares for every time I .5225 is contained in 410 , i.e., $273 \frac{1}{3}$ shares. That is, he holds $273^{1 / 3}$ shares of $\$$ roo each, and these are worth in cash 120 times $2731 / 3$, or 32800 dollars.
9. What sum of money invested at 5% per annum, compounded yearly, will, at the end of 4 years, provide for a perpetual annuity of $\$$ roc.
$\$ \mathrm{t}$ at 5%, for 4 years amounts to $(1.05)^{4}$. The annual interest on this amount at 5% is $\frac{1}{20}(\mathrm{I} .05)^{4}$.
\therefore The sum required is $100 \div \frac{1}{20}(105)^{4}$ or, $\frac{2000}{(1.05)^{4}}$ i.e., $\$ 1645.4 \mathrm{r}$ nearly
ro. An agent's rate of commission for selling is four fifths of his rate for buying. He sold a consignment for $\$ 10200$, and, after deducting $\$ 450$, invested the balance. What did he charge for selling?

He sold $\$ 50200$, and invested, or bought, $\$ 9750$, and the $\$ 45^{\circ}$ is to pay both commissions.

Let his rate for selling be s, then his rate of buying is $\frac{8}{s} s$.
\therefore Commission for selling $=10200 \times s$, and the commission for buying $=$ $9750 \times \frac{5}{7} s$, and the sum of these is $\$ 450$. Whence $s=-\frac{4}{6} \bar{y}$, or 22%
ir. Two candles are of equal length. The one is consumed uniformly in 4 hours, and the other in 5 hours. If the candles are lighted at the same. time, when will one be three times as long as the other ?

Denote the length of the candles by units, one shortens by $1 / 4$, and the other by $1 / 5$ per hour.

After t hours the length of the longer piece will be $1-t / 5$, and of the shorter, $\mathrm{r}-\mathrm{t} / 4$.
$\therefore \mathrm{I}-4 / 5=3(\mathrm{x}-1 / 7)$, whence $t=3^{7} / 11$ hours.
12. Calculate the number of acres in the surface of the earth, considering the earth a sphere 8000 miles in diameter.

The area of the surface of a sphere is equal to that of four great circles $=4 \pi r^{2}$. But $r=4000$ and there are 640 acres in a square mile.
$. \because 640 \because 4 \pi(4000)^{2}=40960000000 \pi$ acres.
13. Find the external diameter of an iron spherical shell whose weight is equal to the sum of the weights of two iron spheres whose diameters are 6 in. and 10 in . respectively, the internal diameter of the sheil being 8 in.

Let r be the external radius required.
Balance of shell $=4 / 3 \pi r^{3}-4 / 3 \pi \cdot 4^{3}=4 / 3 \pi\left(r^{3}-4^{3}\right)$; and the volume of the spheres is $4 / 3 \pi\left(3^{3}+5^{3}\right)$; and these are to be equal.
$\therefore \cdot r^{3}=5^{3}+3^{3}+4^{3}=6^{3}$, and $2 r=12 \mathrm{in}$. -Ans.
14. Find the volume of a right circular cone whose curved surface may be formed by bringing together the bounding radii of a sector of a circle, the radius of the circle being 7 feet, and the angle of the sector 60°

The length of an arc of x° for radius I is .OI 745
\therefore The length of arc of the sector is .01 $745 \times 60 \times 7=7.329$, and this is the circumference of the base of the cone.

The radius of the base is $7 \cdot 329 \div 2 \pi=r$, say
Then the altitude is $\sqrt{ }\left(7^{2}-r^{2}\right)=a$, say.
Finally, the volume is:

$$
\frac{1}{3} \pi r^{2} \cdot a=\frac{1}{3} \pi\left(\frac{7.329}{2 \pi}\right)^{2} \sqrt{ }\left\{7^{2}-\left(\frac{7.329}{2 \pi}\right)^{2}\right\}
$$

