latitudes, thus putting large populations at risk. As similar events have in the past, these changes could initiate large migrations of people, leading over a number of years to severe disruptions of settlement patterns and social instability in some areas.

Global warming can be expected to affect the availability of water resources and biomass, both major sources of energy in many developing countries. These effects are likely to differ between and within regions with some areas losing and others gaining water and biomass. Such changes in areas which lose water may jeopardise energy supply and materials essential for human habitation and energy. Moreover, climate change itself is also likely to have different effects between regions on the availability of other forms of renewable energy such as wind and solar power. In developed countries some of the greatest impacts on the energy, transport and industrial sectors may be determined by policy responses to climate change such as fuel regulations, emission fees or policies promoting greater use of mass transit. developing countries, climate-related changes in the availability and price of production resources such as energy, water, food and fibre may affect the competitive position of many industries.

Global warming and increased ultraviolet radiation resulting from depletion of stratosphere ozone may produce adverse impacts on air quality such as increases in ground-level ozone in some polluted urban areas. An increase of UV-B radiation intensity at the earth's surface would increase the risk of damage to the eye and skin and may disrupt the marine food chain.

Oceans and coastal zones

Global warming will accelerate sea-level rise, modify ocean circulation and change marine ecosystems, with considerable socioeconomic consequences. These effects will be added to present trends of rising sea-level, and other effects that have already stressed coastal resources, such as pollution and overharvesting. A 30-50 cm sea-level rise (projected by 2050) will threaten low islands and coastal zones. A 1 m rise by 2100 would render some island countries uninhabitable, displace tens of millions of people, seriously threaten low-lying urban areas, flood productive land, contaminate fresh water supplies and change coastlines. All of these impacts would be exacerbated if droughts and storms become more severe. Coastal protection would involve very significant costs. Rapid sea-level rise would change coastal ecology and threaten many important fisheries. Reductions in sea ice will benefit shipping, but seriously impact on icedependent marine mammals and birds.

Impacts on the global oceans will include changes in the heat balance, shifts in ocean circulation which will affect the capacity of the ocean to absorb heat and CO₂, and changes in upwelling zones associated with fisheries. Effects will vary by geographic zones, with changes in habitats, a decrease in biological diversity and shifts in marine organisms and productive zones, including commercially important species. Such regional shifts in fisheries will have major socioeconomic impacts.

Seasonal snow cover, ice and permafrost

The global areal extent and volume of elements of the terrestrial cryosphere (seasonal snow cover, near-surface layers