IMFRIMGEMENT OF TRADE MARK.

FWAS a manufacturer of yeast and he used a yellow label on which he printed his name, etc. s. put up his manufacture of yeust and also used a yellow Jabel, but printed his own name, etc., not imitating the inscription of F; The former sued for an imfritugement on the ground alone of the use of the paper of the color used Uy him, and was defeated. In this case-Fleischman us. Starkes- brought in the United States Circuit Court for the District of Rhode Island, Judge Colt, in the opinion said: "This case narrows itself down to the question whether a label of a single color is the lawiul subject of a trade tmark apart from any mathe, fisure or device with whish it may be connected, so that a person who adopts a simbar color upon lis label may be charged with an untawful imitation. Color often serves as the groundwork of a trade mark, and it may be a very essential element in its compocition. In determning the question of infingement it is often a vels important incident. But the term "thatk' imples form rather than color, and it consists of some pecubat lame, symbol tigure, letter or device wheteby one manufacturer dis. ting ruishes hisgoods from like goods sold by wher persons. The color of a label apart from a name or device can hadly be the subject matter of a trade mark. The entect would be that a single manufacturer might acquire the endusi e right to the ase of hadels of a certain paper or to the colored paper in which the goods mught If wrapped This might serionsly interfere with trade and with legttmate competition. Whatever viens that be taken by the French courts in the cases referred to by the learned connsel for complainants, we knom of no American or English authority which goes to this evtent. On the contrary: so far as the point has been touched upon in the adyuticated coses which have come to our notice, an opposite conclusion seems to have been reached.

CLEANING OUT WASTE PIPES.

The annoyance arising from the stoppage of waste pipes in country houses, although rery great, says the itmeriatn . irt vo, is but a small matter compared with the-danzer which may follow obstructed pues. The "suwer gas," :uout which so much hes been written and which is so justly dreaded, is not, as many suppose, the evclusive product of the sener. Indeed, the fonlest, most dangerous and deatly gates are not found in the cewers themselves, but in the umantiated waste pipes ind thone which are in process of betnr ciogged by the foul matters passing through them. Any obstructions in the son cr uaste pipe, are therefore doubly danyetous, becauce it mas produce an intion of fonl ras mo the tope, even though the entrame to the sertel itsctf har been contirely cut oft.

Fiae quation is hon to inet rid of the accumblations in pipes partly sopped or alreaty closed. Jigeving upand cleaning out is n. costl! remeds, often tectiectual by rewon of arches workmen. The second is the plamber's fore pump. which $3 \rightarrow$ wathly enly a temporas relief. In pupes lending from the homse to the resspool there is a and bardens as the water atols and is deposited on the botomand side of the pues In these accumulations inctease, the water way wartualls romtacted till the pipe is closed.

When the pipe is entirely stopped, or allows the water to flow anay by drops onls, proceed thus: Empty the pipe down to the trap or as far as practicable, by "mopping up" with a cloth. If water flows very slowly, begin when the pipe has emptied itself. Fill the pipe up with potash, crowding it in with a stick. Then pour hot water uport it in + amall stream, stopping as soon as the pipe appears to be ritide. As the potash dissolves and disappears, add more water. At night a little heap of potash may be placed over the hole, and water enough poured on sos that a supply of strong lye will flow into the pipe during the night. Pipes that have been stopped for months may be cleaned out by this method, though it may call for three or four pounds of potash. The crodest kind, howeter, appeais to act as well as the best. If the pipe is partiall, obstructed, a lump of crude potash should be placed where water will dirp slowly upon it and so reach the pipe. It is also well to fill the upper part of the pipe with the potash as before and allou bot water to trickle upon it. .ioda and potash are both used for the purpose of removing greasy obstructions, and the usual method of application is to form a strong lye and pour it into the pipe. It is better io put the potash into the pipe because the water which it contains instead of diluting, helps to form the lye. As water comes in contact with the potash is becomes hot thus aiding in dissolving the grease. I'otash, in combination with grease, forms a "soft" or licuid soap, which easily flows away while the soda makes a hard soap, which, if not dissolved In water, woold in itself obstruct the bipe.

When a pipe is once fairly cleaned out, the potash should be used from time to time, in order to dissolve the greasy deposits as they form, and carry them forward to the cesspool or sewer. The potash is very valuable tor this purpose, because, in addition to its grease solving fowers, it is exceedingly destructive to all animal and most vegetable matters. The most dangerous and deadly gases appear to come from urinals and wash basin pipes, thrse, in many cases, seem.nng to be more foul than those from water closets. The decay of the soap and animal matter wastied from the skin appear to be the sources of the gases. The potash will be effective in kceping these pipes clearand in this way may lessen the dangers.

PERCENTAGE.

The reckoning of percentages, like the minus sign in algebia, is a constant stunbling-block to the novice. Eien evperienced newspaper writers, remarks the New lork fourmat of commerat, often becone madded when they attempt to speak of it. The ascending scale is easy emough : Five added to 20 is a gain of 25 per cent. ; given inly stum of figures, the doubling of it is an addition of too per cent. But the moment the change is a decreasang calculatoon, the inenperienced mathematcian betrays himself, and even the copert is apt to stumble and go astray. In adtance from 20 to $\mathbf{2} 5$ is mm increase of 25 per cent. but the reverse of this, that is a decline from $2 ;$ to 20 is a decrease of onl) 20 per cent. There anc many persons, otherwee melligent, ito cannot see "hy the reduction of 100 to 30 is not a decrease of 100 per cent. if ath adaance from 50 to 100 is an merease of $t 00$ per cent. The other day an article of merchandise Which had been purchased at to cents a pound was resold at 30 cents a pound, a profit of 200 per cent. ; whereumanariwriter in chroniching the sale, said at the beginning of the recent depression several invoices of the same class of goods, which hach erot over 30 cents per pound, had been finally sold at to centsper pound, a loss of over 200 per ceat. Of course there cannot be a decrease or loss of more than 100 per cent. : because this wipes out the whole of the mestment. An advance from to to 30 is a gain of joo per cent. ; a decline from jo to 10 is a loss of only ck s per cent.

POWER REQUIRED IN FLOUR MILLS.

A correspondent writes to $/$ oncer, an Ameticau scichutic journal, as follows. " 1 have been running engines jast seventeen years, and 1 find that there is mach to harn yet. 1 hape set up four boilets and finc engines in my time. I think the more a man learns the more he finds to learn. At present 1 am running a $i+\times 27$ side slide-valve lladley engine, and my boiler is $\mathbf{5 2 k 2 4}$ five-flue. The engine ruas eight sets of rolls, seven reels and other machunert: all rum eleven hours per day, and making tifty barrels of tlour. 1 burn $=, 400$ pound, of Oho nut and slack coal in about eleven hours and foty mmutes, Is that nasturg coal or not ${ }^{\text {en }}$ To which Power replies: "The first two neeks a math runs an engine, he can generally give the builder poins. The next two weeks he begias to get one or two. Afer that le doesn't quite know at all. When he has leen at it about ten jears, he gener if consults some one whenever anything new comes up. In about fifteen years he consults his neighbors about the regular run of atiairs. You make fify barrels of flour with 2,400 pounds of nut and slack coal ; that is 48 pounds of coal per barrel, and is $t 00$ math You should make 50 barrels in tacentryfour hours with $2 \cdot 1725$ horse power. To do it in twelve hours you should have 44 to go horse poner, and this should be got, with any decent kind of 50 horse power engine and with a respectable boiler, out of 1,800 pounds of coal. 1 should be very glad to guarantee to do it with 2,000 pounds. You ought to get along with thiny pounds of coal per barrel of flour if you run twenty:four hours. Rolls take less power than burrs, but there is yenerally enough extra finishing and cleaning machinery in a roller mill to keep the power per barrel of flour about the same with rolls as with either 'old process' or 'new process' stone milling."

THE CARRYING CAPAC:AT OF CABS.

Ten years agn, rmarks an exchange, a standard car load on all first class railroads was 20,000 pounds, the weight of the car being 20,500 pounds. In 1881 the lond on most mads had increased to only 32,000 pounds The nhaster car builders of the Pennsyivania road have now adopted cars to carry; 60,000 pounds, while the weight of the cars will be very litte increased. Instend of hauling more than one pound of car to one pound of freight nearly three pounds of freight can now be hauled for one pound of car. The substitution of steel for iron rails has made change possible. The condition of affirs makes it possible for the romds to carry freight at the low rates they receive and yet make a profit.

TESTS FOR DETERMIMING THE FASTME or cotolit.
In order to determine the fastness of colors with which fabrics have been dyed the following teats may be mude : Kels.-Boil a small strip of the tissue to be tested in sonp.water und another atrip in lime-water. The color should change very littie. 1f, however, it in either cave turns yellow or brown the color is not finst.
Yel.tows.--Hoilstrips of the tissue in water; in alcolot and in lime.water. If in the two last solutions the tisoue takes a yellow color, aud the liguid a reddish color, the dye is not fast.
Butus,-Fast blue when boiled in alcohol should not affect the color of the bath, and the color itself should not change to red ot reddish brown. When dippedina warm solution of muriatic acid and water, or alcohol, and the bath takes a reddish color, the blue is not fast. Vionsers,- When violet colors beiled in a suixture of equal parts of water atad alcohol sive up their color or change to reddish brown, or brown when boiled in dilute muriatic acid, giving a reddi-h color to the bath, they cannut be considered fast. Of violet shaties only madder volet and a combination of indigo and cochineal are fast.
Grienss- When boiled in dilute alcohol, fast colors should not color the bath green, yellow or blue. In dilute mutiatic acid the bath should not become either blue or 1 ed.
Bkowss. - Browns which, when fyoiled in water, color the bath red, or, when left for a time in alcohol color the bath yellow, are not fast colors.
Mhacks.- If a dilute murratic acid solation is colored red on dipping in it a strip ot black tissue, the color of which changes to reddish brown or to brown, the color is not fast (logwood.) If the color of the tissue changes to blue, the biack has a ground of indigo and its degree of fastness depends on the decpness of the indigo bottom shade. Black may be considered perfectly fast when being boiled with dilute muriatic acid, the liquid is colored ycllow. To disconer whether a black tissue has a botom of indigo, boil a strip in a soda bath. If indigo is present, the tissue retains its black color or changes to blue or green, but if the black is a purc tannin black it will become brown.

hold on to your trade paper.

How do you read a technical paper? By running down the column to see if there is something sensational to "catch your cye," or that specially interests you? If you pursue this course you lose the money you patd for the paper. There is nothing in a well-conducted technical paper that is not of value. All may not be equally interested in certain topics or subjects, but there is something for all, and "information" is a very elastic word. It covers all things useful; and to keep up with the times, one should read a paper carefully. A properly edited technical paper is a handbook of the period and time in which we live. It sets forth current practice in certain brancies of mechanics, or engineering, or other traties that support it, and it is the only vehirle for conveying technical knowlege in an easy, assimilable form. There are times in trade when there is next to nothing doing, and though the publishers scan the horizon and the immediate surroundings closely, little presents itself worthy of note. Then the paper is dull, and the publishers arc as well aware of it as the readers are; but in the course of a year it must be either a poor paper, or a poor reader, that does not give or obtain the value of the subscription Hold on to your trade paper if you would keep up with your trade.-Mcchenvical Engineer.

THE PIEAETVATION OP EOPas.

The preservation of scatfold ropes is a matter of great importance when scaffolding remains erected for any conciderable tine, especially in localities where the atmosphere is destructive $r, 3$.ap fiber. It has been suggested that in these cases the ropes should be dipped, when dry, into a bath containing 20 grammes of suiphate of copper per liter of water, and keps in sonk in this solution for four days, afterward being dried. The ropes will thus have absorbed a certain quantity of sulphate of copper, which will preserve them frow the attacks of animal farasites and from rot. The copper sult may be fixed in the fibre by a coating of tar or by soapy water. For tarring the rope it is best to pass it through a bath of boiked tar, hot, drawing it through a thimble to guess back the excess of tar, and auppending it afterwardien a
staging to dry and harden. In the second methor, the staying to dry atod hardeta. In the second method, the rope is sonked in a solution of 100 grammes of soap yper Hiter of water. The copper soap thws formed in thetive
of the rope preserves it from rot even better than tin ter of the rope preserves it from sot even better than tiveter,
which acts mechanically to imprisom the sulothate oferwhich acts mechanically to imprisom the sumpatis ofepr

