in order to meet these requirements, as well as some other details, the production of these housings was a work involving no little skill and anxiety.

Screwing-down gear for the horizontal rolls is placed in the usual way on the top of the housings. On the housing and side frame of the mill is arranged screwing gear for setting up the vertical roll transversely, and simultaneously for setting up the necessary guides for the slabs, these guides extending a considerable distance in front and at the back of the rolls. Both sets of gear are driven by a small pair of engines through gearing. They can be worked together; but the practice is not to work them simultaneously, but alternately as required, so that work can be put on the flat or edge of the slab at choice. To this end clutches are arranged on the shaft of the small driving engines.

at the back of the rolls. Both sets of gear are driven by a small part or engines through gening. They can be worked together; but the practice is not to work then simultaneously, but alternately as required, so that work can be put on the flat or edge of the slab alt choice. To this end clutches are arranged on the shaft of the small driving and a choice. To this end clutches are arranged on the shaft of the small driving and a choice. To this end clutches are a ranged on the shaft of the small driving had the control of the driving shaft is carried in bearings formed in the pinion housings and receives its motion through a pair of wheels, one on its extreme end, and which we kes into another keyed on the shaft of one of the mill pinions. This outer end of the driving shaft is carried in bearings formed in the pinion housings. As one of the vertical rolls has a traversing motion, the bevel wheel driving it must necessarily slide along the shaft. In order to keep it in gear with the crown wheel on the rolls, a special form of yoke and thrast bearing was designed, which is carried on the projecting end of the vertical roll above the crown wheel. The driving wheel on the horizontal shaft has a long boss or sleeve, on which are formed collars; these fit into and run in the thrust bearing on the top end of the vertical roll. The spindles for driving the borizontal rolls are both supported in bearings, the upper one in a manner said that the front and back of the rolls are dead of an activated by hydralize range a considerable distance from the rolls. At each extremity are special carriages, similar though not identical in design, for binging the ingot to the mill at one end, and removing the slab to the shears at the other. These carriages were adopted in place of the long series of live rollers commonly used. They are extraorded in place of the long series of live rollers commonly used. They are extraorded in place of the long series of bringing up the ingot was a necessity under the special circumstances, inasmuc

versely to the shears. Provision is made for holding down the after end of the slab during shearing, by a cylinder fixed on the entablature, in which works a ram acting through a cross-head upon two rods; the latter are attached to a second cross-head, which presses down on the slab. All the rams are designed to work against constant pressure from the accumulator, and thus the return stroke is obtained. The accumulator is loaded to give a pressure of t ton per square inch. The pipes or tubes are all led to a convenient position, where all the movements are controlled by one man at the valves. On two of the columns brackets are provided, which support sliding brackets carrying the table that receives the slab when sheared. This table has hydraulic cylinders and rams under it, by which it is raised or owered to suit the stroke of the shears when cutting off the slab. By the action of another ram the table after receiving the sheared slab is made to slide outwards, away from the shear-blade, and into range of the hydraulic crane, which lifts the slab and loads it upon the carriage, where it is weighed and stamped, preparatory to being passed forward to the plate-mill. In shears of this kind, it is important that the cut should be made as rapidly as possible; otherwise the hot slab is so long in contact with the blades that they become softened, the edges fail and they are soon rendered useless. Hence the areas of all apertures leading to the hydraulic cylinders should be as large as possible.

Slab-cutting shears of great power were made by Messrs, Buckton & Co., to work in connection with the eogging-mill at Wishaw steel works. The machine will cut a hot slab up to 42 inches wide and 12 inches thick. It is driven by coupled engines, with cylinders 26 inches diameter and 30 inches stroke, through gearing with a multiplying p wer of thirty to one. The eccentric shaft is 20 inches diameter in the necks; the caps of the eccentric shafts are held down by four bolts of to ½ inches diameter,

passing through the uprights from top to bottom. While a slab is being cut off, it is held down on the anvil of the machine by a self-acting hydraulic-pressure foot, giving a load of twenty tons; this prevents the slab from tilting upwards under the action of the cut. The remaining portion of the bloom rests on a roller cradle, which is supported by a hydraulic cylinder loaded to a constant pressure of 20 tons, so that the bloom is-upheld and prevented from tilting downwards under the action of the cut. Thus both parts of bloom are compelled to remain approximately horizontal; in consequence the severed ends are cut square, and are not sensibly scarfed. The cradle of live rollers which supports the bloom becomes depressed under the pressure of the shear slide, and recovers its position when the slide goes up again. The cradle is arranged to feed the blooms into the machine, and the cut slabs are delivered over the anvil. The object of this arrangement is that the live rollers which feed the bloom

shear slide, and recovers its position when the slide goes up again. The cradle is arranged to feed the blooms into the machine, and the cut slabs are delivered over the anvil. The object of this arrangement is that the live rollers which feed the bloom in may be brought as close to the knives as possible. At the delivery side of the machine there is a hydraulic measuring stop, for gauging the cut slabs to measured lengths from 6 inches to 8 feet long. It has a pointer and graduated scale for measuring; and is made with a hydraulic tilting cylinder, to swing the top free above the travelling bloom. With this gauging stop, the bloom can be stopped while travelling on the live rollers, and can also be pushed back and exact position for cutting, and be regulated easily to a fraction of an inch.

Plate Miles.—In this country it is almost the universal practice for plates of, say, & inch thickness and upwards to be rolled in reversing mills, especially if they are of considerable area and weight; the difficulty in handling heavy slabs and plates no doubt conduces to this practice. Whether it is the most economical method of manufacture, especially for what may be described as plates of medium thickness and weight, may, perhaps, be open to discussion; but for handling the heavy plates now produced it is undoubtedly the safest, and, perhaps, also the most economical. The plate mills supplied to the Wishaw works by Messrs. Lamberton & Co. are excellent illustrations of prevent practice. For general use in producing plates of medium width, the mill is provided with two stands of rolls, the firm grain being chilled, as is customary. The rolls are 8 feet long and 30 inches diameter. Both top rolls are supported on hydraulic balances, and have a lift of 18 inches. Mechanical screwing-gear is applied to the roughing rolls, and is driven by a pair of small horizontal engines geared to give the required speed. The chilled roll is screwed down by hand in this case; but there is no satisfactory reason why the screwing should no slight alteration of this, made by the roller when necessary, will at once correct any small inaccuracy in the setting or position of the main screws. Live rollers are fitted in the front and at the back of the rolls, and are driven by a pair of vertical engines conveniently placed so that the driver can see the operations at the mill. The live rollers extend a considerable distance in front of the rolls, but only a short distance at the back; here they are supplemented by live rollers fitted into a table, which traverses the two sets of rolls, carrying the slab or plate across from the roughing to the finishing rolls. The table and rollers are actuated by a pair of vertical engines in the usual manner. The table travels in a pit; and its rollers being on a level with the mill floor, the finished plate is rapidly and readily delivered upon it. In a line with this mill is a stand of rolls for handling plates of the greatest weight and width. The rolls are 12 feet long and 40 inches diameter, the top one supported on hydraulic balances. The chocks are all of steel with heavy brasses.

This mill is fitted with mechanical screwing gear, driven by horizontal engines which are fixed on the top of one of the housings, and it is not appeared to the contract of the housings.

mill is a stand of rolls for handling plates of the greatest weight and width. The rolls are 12 feet long and 90 inches diameter, the top one supported on hydraulic halances. The chocks are all of steel with hechanical screwing gear, driven by horizontal engines which are fixed on the top of one of the housings; and it is so arranged that either of the screwing at pleasure, even to the extent of rolling plates of taper cross section if required. The arrangement is as follows:—On the crankshaft of the engine is keyed a pinion, which through a spur wheel drives the main shaft that extends over both housings; and on each of the main screws is a worm wheel, which is driven by a worm on the main shaft. These worms are loose on the shaft, and run in collar bearings in pillow blocks. They have three-pronged clutches on their outer ends, into which can engage corresponding clutches sliding on keys or feathers on the shaft; either or both of the clutches can be thrown in or out of gear, and either of the main screws can thereby be moved or stopped at pleasure by the screwer, who stands on a platform near at hand, and obeys the instructions of the roller. The pinions for driving both mills are placed between them. The spindles for driving the large rolls are of considerable length, so as to reduce the angle at which they drive. They, as well as their coupling boxes, are of steel. In front and at itack of this mill are complete sets of live rollers, driven by a pair of vertical engines, which are conveniently placed for driving the three or the lave rollers of the S-feet roughing rolls, as may be vequired. A useful appliance is here provided for adjusting the position of the plate in front of the rells so that it shall pass through them as nearly square as possible, and at equal distances from the housing. Such an appliance was first designed by Mr. Duff for the large plate-mill at Blochairn works, but has been modified for use here by Mr. Williamson. A long pusher-lar is connected to a hydraulic ram and cylinder fixed at