Fourth Panel

The load on the fourth panel, l_4 , is similar to that on the second and third panels. Let these loads be P_4 and P_4' . Then
$M_4 = \frac{1}{8}P_4 l_4 + 0.128 P_4' l_4 \dots \dots$
ur which
$P_4 = \frac{1}{12} \times 0.434 h_3 l_4 p$
and
$P_{4'} = \frac{1}{2} \left[\left(0.434 h_3 / 12 \right) + \left(0.434 h_4 / 12 \right) \right] l_4 p$
in which $h_4 = h_3 + l_4 \cos \alpha = 228 + l_4 \cos \alpha$.
Substituting the values of h_3 and h_4 , we get
$P_{4} = \frac{1}{12} \times 0.434 \times 228 l_{4}p = 8.23 l_{4}p \dots \dots$
$P_4' = \frac{1}{2} \left[\left(\frac{1}{12} \times 0.434 \times 228 \right) + \left(\frac{1}{12} \times 0.434 \right) \left(228 + l_4 \cos \alpha \right) \right] l_4 p$
$= \frac{1}{2} [8.23 + 0.0362 (228 + l_{4} \cos \alpha)] l_{4} p \dots (21)$
The resisting moment, as before, is
$M_{r_4} = 4,170bd^2$
Substituting values of (20) and (21) in equation (19),
veget
$M_{4} = (\frac{1}{8} \times 8.23 l_{4}^{2} p) + (\frac{1}{2} \times 0.128 l_{4}^{2} p) (8.23 + 8.23 + 0.0314 l_{4})$
Reducing and substituting for p, we get

 $M_4 = 1.29l_4^2 + 1.317l_4^2 + 0.00252l_4^3$

 $= 2.607l_4^2 + 0.00252l_4^3 \dots$ (23) Equating (22) and (23). we get

 $2.607l_4^2 + 0.00252l_4^3 = 4,170bd^2 = 6,660.$

Solving for l, by trial, we get

 $l_{4} = 49$ ins.

and

$h_4 = h_3 + l_4 \cos \alpha$

$= 228 + (49 \times 0.866) = 270.5$ ins.

In this way the length of panels between supports can be determined for any spacing of bars and any size bar. The accompaning Table No. 1, gives these lengths for bars $\frac{1}{4}$ in. by 2 ins. to $\frac{1}{4}$ in. by 4 ins. and spacing of $1\frac{1}{4}$ ins. to 3 ins. inclusive.

If it be desired to use a bar thicker than 1/4 in., the length of first panel can be obtained from the table as follows :--

Cube the length, l, corresponding to a bar of the same height, d, and spacing p, and multiply by the width of bar to be used. Then divide by the width of bar in table (1/4 in.). Extract the cube root of this result, and this will be the desired length, 4. See equation (8).

By examining equation (13a), it will be seen that the second term of the left hand member is of small value, and the first term is the controlling factor, and we can therefore say that the length varies as the square root and not as the cube root, with no appreciable error. We can therefore say that the length of all panels after the first vary as the square root of the resisting moment of the bar. As this moment is directly proportional to the thickness of the bar, the values of l_2 , l_3 , etc., can likewise be taken from the table by squaring the length given in table for a bar of the same height and spacing, and multiplying this result by the desired thickness, and dividing by the thickness used in the table (1/4 in.), then extracting the square root and using the values of l_2 , l_3 , etc., so obtained.

For example, say it is desired to use a bar 3% in. by 31/2 ins. instead of 1/4 in. by 31/2 ins., and a spacing of 2 ins. Then l_1 from table = 147 ins. Let l'_1 = the desired length for 3% in. by 31/2 ins. bar. Then

 $l_1' = (l_1^3 \times 0.375/0.25)^{1/3}$

 $= l_1(0.375/0.25)^{1/3}$

 $= 147 \times 1.145 = 168$ ins. Let $l_{2}' =$ second panel length. From table, $l_{2} = 69$ ins. Therefore

 $l_2' = (l_2^{20.375/0.25})^{1/2}$

$$= l_2(0.375/0.25)^{1/2}$$

 $= 69 \times 1.225 = 84.5$ ins. Let $l_{3}' =$ third panel length. From table, $l_{3} = 57.5$ ins. Therefore

$$l_{3}' = (l_{3}^{2} \times 0.375/0.25)^{1/2} \\ = l_{3}(0.375/0.25)^{1/3}$$

$$-575 \times 1225 - 70$$
 i

ins. Let $l_i' =$ fourth panel length. From table, $l_i = 51.5$ ins. Therefore

 $l_{4}' = (l_{4}^{2} \times 0.375/0.25)^{1/2}$ $= l_4(0.375/0.25)^{1/2}$ $= 51.5 \times 1.225 = 63$ ins.

Of course this is only true when the angle of the rack bar is 30 degs. from the perpendicular. For any other angle, the panel lengths should be determined from the foregoing equations by substituting the proper value for cosoc

The values here given in Table 1 will be safe for the worst conditions imaginable, because the stress used is inside the elastic limit of steel. If the designer wishes to use a different stress, he need only multiply l, from the

		1	211-24		S. P.	1		Ser All	11.5.3.5	-
D		Spacing of Bars	es	TA	BLE	1	and the second			
Back Bar	Resisting	Baci	ch							
(Inches)	Moment	Sp	E 11	12	13	1.	h ₁	h_2	2	22
1/4 x2	4,170	11/4	118	58	48	42	102	152.5	h3	h4
1/4 x2 1/2			135.5		56	49	117.4	152.0	5 194 228	230
1/4 x3	9,350			77	64	56	134	201	256	270
1/4 x3 1/2	12,750			86	71	62	149	247	308	304
¥4 x4	16,650			94	78	68	163	247	308	361 371
1/4 x2	4,170				45	39.5			183	
1/4 x21/2	6,660			65	54	47	113	169	216	217 257
1/4 x3	9,350		146	73	60.5		127	190	242	288
1/4 x3 1/2	12,750				67	59	140	210	268	319
1/4 x4	16,650		176.5	88	73	64	153	229	208	347
1/4 x2	4,170			52	43	37	92	137	174	206
1/4 x2 1/2	6,660	13/4	123	61	51	45	107	160	204	243
1/4 x3	9,350	13/4	138.5	69	57.5		120	180	230	273
1/4 x31/2	12,750	13/4	153.5		63.5		133	199	254	301
1/4 x4	16,650	13/4	168	83	69	60	145.5		277	329
1/4 x2	4,170	2	103	48	40	36	89	131	166	197
1/4 x2 1/2	6,660	2	118	56	47	43	102	150	191	228
1/4 x3	9,350	2	133	62.5	52	47	115	169	214	255
1/4 x31/2	12,750	2	147	69	57.5		127	187	237	282
1/4 x4	16,650	2	160	75	62.5	56	139	204	258	306
1/4 x2	4,170	21/4	97.5		39	35	84	124	158	188
1/4 x21/2	6,660	21/4	114	54	46	41	99	146	186	221
¼x3	9,350	21/4	127	60	51	46	111	163	207	247
1/4 x31/2		21/4	141	66.5	56	50	122	179	227	270
1/4 x4	16,650		154.5	73	62	55	134	197	250	297
1/4 x2	4,170	21/2	94	44.5	38	34	81.5	120	153	182
1/4 x2 1/2		21/2	110	52	44	39	95.5	140.5	178.5	
1/4 x3	9,350	21/2	123	58	49.5	44	106.5	156.5	199.5	237
1/4 x31/2	12,750	21/2	136	64.5	55	49	118	174	221.5	
1/4 x4		21/2	149	70.5	60	53.5	129	190	242	288
1/4 x2	4,170	23/4	91	43	37	33	79	116 -	148	177
1/4 x2 1/2	6,660	23/4	106	50	43	38	92	135	172	205
1/4 x3	9,350	23/4	119	56	48	43	103		193	230
1/4 x3 1/2		23/4	133	63	54	48	115	169.5	216	257
1/4 x4		23/4	144	68	58.5	52	125	184	234.5	279
1/4 x2		3	88.5	42	36	32	76.5	113	144	172
1/4 x2 1/2		3	104	49.5	42.5	38	90	133	170	203
1/4 x3	9,350	3	116	55	47	42	100.5	148	188.5	225
1/4 x3 1/2		3		61	52	46	111	164	209	249
¼x4	16,650	3	140	66.5	57	50	121		228	271
The Contractor	1300								1 Maria	No to

 $*M = \frac{1}{6} \times bd^2 \times 25,000.$

table, by the cube root of the quotient, stress (S) divided by 25,000; that is, multiply l_1 , from the table, by $(S/25,000)^{1/3}$ for the first panel length, and by $(S/25,000)^{1/2}$ by for l_2 , l_3 , etc.

Construction of Panels

The bars are usually held together by through bolts, with sections of wrought-iron pipe of proper length strung between the bars, as shown in Fig. 3. The through bolt is placed back of the centre line of the bar so that the cleaning rake will not catch so readily.

The nuts on the bolts should not project outside the panel but should be guarded by a bar which is riveted at both ends. If this is done, the rack panels can be easily withdrawn and replaced.

The lower end of the rack bars can rest in an angle iron embedded in the concrete, and the upper end should be anchored by means of a hook engaging the spacing bars.

Supporting Structure

There are various methods for supporting the bars, depending on the construction of the adjacent building. If dividing walls can be placed at frequent intervals so as not to make too great a spacing, then I-beams can be embedded. in these to support the racks. Such an arrangement is