
at - 37°, gradually increasing to 0.0465 ft. or about .55 inch at 75°, at which point movemend velocity is zero and the upward wheel the has attained its maximum. The Wheel then begins to return to the rail, its Words, becoming zero again, or in other referring, striking the rail at 115°, and by seen thin to the velocity curve, it will be ity is that at the point the downward velocity is 4.7 ft . per second. This velocity forreesponds to that gained in dropping $41 / 2$ ins $41 / 2$ ins., and as the weight is $3,200 \mathrm{lbs}$., It is interetual, but not severe, blow.
explains interesting to note that this diagram on testing completely the results obtained the testing plants, and with wire run under noted drivers, in which W. F. M. Goss has quick that the wheel appeared to drop more ably greater it went up, and at a considerit is greater distance from the centre, and movevident that this should be so. The with the of the wheel does not coincide the force is variation in the force. As long as an orce is upward the wheel is acquiring not upward velocity, and this velocity does have become zero until the downward forces time to oned on the wheel for a sufficient upward destroy it. In the same way, the only movement goes on increasing, not until it it the upward velocity decreases, but return to destroyed and the wheel does not city has the track until the downward velo-
The attained a very considerable amount. ploted diagram in fig. 4 shows similar curves mentioned 320 revolutions for the engine to the rail as having caused the damage an exceptil on the C.P.R. This is, of course, that theeptionally bad case, but it will be seen for the wheel did not return to the track of $17 \frac{1}{2}$ ' when it had a downward velocity free fall 171.2 per second, corresponding to a Weight of $43 / 4 \mathrm{ft}$., from which height a a blow of 3,200 lbs. would certainly deliver the effects sufficient energy to account for In effects observed.
${ }^{1}{ }^{1}$ an extreme case of this nature, how-
ever, the method of analysis employed gives results that are greater than would actually occur, since the force acting down on the wheel is not constant, but would increase as the wheel moved upward and deflected the spring. For instance, if the latter had a deflection of 0.2 ft . under the working load of $18,800 \mathrm{lbs}$., the downward force with any upward movements of the wheel would equal

$$
3200+18800\left(\frac{s+0.2}{0.2}\right)
$$

in place of a constant amount of 22,000 lbs., and the acceleration equation would then become

$$
\frac{d^{2} s}{d t^{2}}=C \cos k t-\left[3200+18800\left(\frac{s+0.2}{0.2}\right)\right]
$$

This expression involves s and becomes exceedingly complicated to integrate, but the effect of including it would be to diminish the upward movement and slightly reduce the striking velocity. In the first case its influence is inappreciable as the upward movement is small, but in the second it would certainly reduce this, and account for the box not striking the frame. An exact solution would in addition allow for the elasticity of the track, and this in its turn would apparently increase the velocity of the blow, although an equation involving it would probably be too complicated to treat mathematically except by an expert.

While, however, the solution here given in fig. 4 may not be exactly correct, the actual striking velocity being lower than that calculated, there is no doubt that it is of considerable magnitude, and probably from 12 to 15 ft . per second, and an absolute hammer blow is therefore accounted for which is of sufficient intensity to explain the damage that has occurred.

It is interesting to note that in extreme cases the wheel does not return to the track or the blow occur until the wheel has moved to a position where the counterbalance is within 20° or 30° of being vertically downward, and the popular connection of this blow with the downward movement of the counterbalance is thus explained.
The result of these calculations would emphasize the danger of an unbalanced force which could equal the weight on the wheel. On the usual assumption that the maximum speed in miles per hour equals the diameter of drivers in inches, this would restrict the overbalance in any wheel to $21 / 2$ per cent. of the weight on the wheel, and to be entirely safe the practice on the C.P.R. is now to limit it to $11 / 4 \%$, and to make it 1% if possible.

Mathematical Analysis.
When counterbalance is vertically upward $t=0$

Let $w=$ acceleration due to downward force of spring and weight of wheel, acting on mass of wheel
$c=$ acceleration due to maximum value of force caused by overbalance, acting on mass of wheel
$s=$ vertical movement of wheel, from rail, feet
$t=$ time, secorids
$k t=$ angular movement of wheel, radians $d^{2} s^{\prime}$
Then, $\frac{d t^{2}}{d}=c \cos k t-w$

$$
\frac{d s}{d t}=\frac{c}{k} \sin k t-w t+\mathrm{C}
$$

$=0$ when $t=-t_{1}$, when $\cos k t_{1}=\frac{c}{w}$
Then $\mathrm{C}=\frac{\boldsymbol{c}}{\boldsymbol{k}} \sin k t_{1}-w t_{1}$
And $\frac{d s}{d t}=\frac{c}{k} \sin k t+\frac{c}{k} \sin k t_{1}-w t-w t_{1}$,
from which the velocity curves are plotted

$$
\mathrm{s}=-\frac{c}{k^{2}} \cos k t+\frac{c t}{k} \sin k t_{1}-\frac{w t^{2}}{2}-w t t_{1}+\mathrm{C}
$$

$$
=0 \text { when } t=-t_{1}
$$

Then $\mathrm{C}=\frac{c t_{1}}{k} \sin k \mathrm{t}_{1}+\frac{c}{k^{2}} \cos k t_{1}-\frac{w t_{1}{ }^{2}}{2}$

$$
\begin{aligned}
& \text { and } s=\frac{c}{k^{2}}\left(k t_{1} \sin k t_{1}+\cos k t_{1}\right)-\frac{w t_{1}{ }^{2}}{2}-\frac{w t^{2}}{2}+ \\
& \qquad t\left(\frac{c}{k} \sin k t_{1}-w t_{1}\right)-\frac{c}{k^{2}} \cos k t_{1}
\end{aligned}
$$

from which the space curves are plotted.American Engineer and Railroad Journal.

The Life Underwriters' Association of Canada recently applied for the same rates of fares on railways in Eastern Canada as are given to commercial travellers. The application was refused in view of the different conditions of the two organizations.

FIGURE 3

FIGURE 4

