by what is *convenient* than by what is true, and that perhaps some other more convenient explanation might some day replace the one now adopted. But in the case of the negative index such a mode of expression is still less admissible, because the steps by which the meaning is established are so easy and straightforward.

If any operation performed on a quantity x be denoted by $f^{1}(x)$, we should denote the same operation performed upon $f^{1}(x)$ by $f^{1}(f^{1}(x))$ or conveniently by $f^{2}(x)$. $f^{2}(x)$, therefore, denotes the operation f^{1} performed once upon $f^{1}(x)$, or twice successively on x. Similarly $f^{3}(x)$ may be used to denote the function f^{1} performed once on $f^{2}(x)$, twice successively on $f^{1}(x)$, or three times successively on x, and so on. Adopting this notation we shall have $f^{m}(x)$ to represent the operation f^{1} performed m times on x successively, and $f^{m+n}(x)$ or $f^{n+m}(x)$ to represent either the performance of the operation $f^{1}m$ times on $f^{n}(x)$, i.e., $=f^{m}(f^{n}(x))$ or n times on $f^{m}(x) = f^{n}(f^{m}(x))$ or m + n times on x, the result being in each case the same, *i.e.*,

$$f^{m+n}(x) = f^n \left(f^m(x) \right) \qquad (a)$$
$$= f^m \left(f_n(x) \right) \qquad (\beta)$$

Hence $f^{m}(x)$ is derivable from $f^{n+m}(x)$ by undoing the *n* operations denoted by f^{n} in (a) and $f^{m}(x) = \overline{f^{m+n-n}(x)}$.

Hence — n in the index must be regarded as undoing the operation f^1 n times supposing it had been performed more than n times on x.

But what does $f^0(x)$ or $f^{-n}(x)$ represent of itself, when there is no operation to undo?

Now we observe that f^1 denotes an operation performed once, f^2 twice; f^m m times.

 f^{0} represents the operation performed no times, that is, not performed at all, or $f^{0}(x)$ is the same as x, for just as truly as f^{m} represents m operations, so truly does f^{0} represent no operations:

274