by what is convenient than by what is true, and that perhaps some other more couvenient explanation might some aay replace the one now adopted. But in the case of the negative index such a mode of expression is still less admissible, because the steps by which the meaning is established are so easy and straightforward.
If any operation performed on a quantity x be denoted by $f^{1}(x)$, we sbould denote the same operation performed upon $f^{f^{1}}(x)$ by $f^{1}\left(f^{1}(x)\right)$ or conveniently by $f^{3}(x) . f^{2}(x)$, therefore, denotes the operation f^{1} performed once upon $f^{1}(x)$, or twice successively on x. Similarly $f^{3}(x)$ may be used to denote the function f^{1} performed once on $f^{2}(x)$, twice successively on $f^{1}(x)$, or three times successively on x, and so on. Adopting this notation we shall have $f^{m}(x)$ to represent the operatiou f^{1} performed m times on x successively, and $f^{m+n}(x)$ or $f^{n+m}(x)$ to represent either the performance of the operation $f^{1} m$ times on $f^{n}(x)$, i.e., $=f^{m}\left(f^{n}(x)\right)$ or n times on $f^{m}(x)=\boldsymbol{f}^{n}\left(\boldsymbol{f}^{m}(x)\right)$ or $m+n$ times on x, the result being in each case the same, i.e.,

$$
\begin{align*}
f^{m+n}(x) & =f^{n}\left(f^{m}(x)\right) \tag{a}\\
& =f^{n^{2}}\left(f_{n}(x)\right)
\end{align*}
$$

Hence $f^{m}(x)$ is derivable from $f^{n+m}(x)$ by undoing the n operations denoted by f^{n} in (a) and $f^{m}(x)=\overline{f^{m+n}-n}(x)$.

Hence - n in the index must be regarded as undoing the operation $f^{1} n$ times supposing it had been performed more than n times on x.

But what does $f^{0}(x)$ or $f^{-n}(x)$ represent of itself, when there is no operation to undo?

Now we observe that f^{1} denotes an operation performed once, f^{2} twice; f^{m} m times.
$\therefore f^{0}$ represents the operation performed no times, that is, not performed at all, or $f^{\circ}(x)$ is the same as x, for just as truly as $f^{\prime \prime}$ represents m operations, so truly does f° represent no operations:

