As the individual electromotive forces of all ordinary voltaic batteries occur at the junction of

- (a) Metal with metal;
- (b) Metal with electrolyte;
- (c) Electrolyte with electrolyte, it is possible from the data given above to calculate the E.M.F. of a large number of cells. For example, in the Daniell's element, the total E.M.F. is made up of
 - (1) Zinc Zinc sulphate solution.
 - (2) Zinc sulphate solution Copper sulphate solution.
 - (3) Copper sulphate solution Copper.
 - (4) Copper Zinc.
- (1) Of these the first depends on the concentration of the zinc sulphate solution. If this contains 161 grammes Zn SO₄ per litre ("normal solution"), the E.M.F. will be 0.51 volts with the zinc negative [Table 4], which number will be greater if the electrolyte be more dilute, and conversely. The quantitative relation is given by equation (15¢):

$$\pi = 0.0002 \frac{n_i}{n_e} T \log_{10} c + constant$$

(c being the concentration of the zinc sulphate in solution) the change in value of variable term on the right-hand side being obviously the quantity in question. Thus, diluting the electrolyte with an equal volume of water would change the E.M.F. to

$$0.51 + 0.0002 \times \frac{1.25}{2} \times (273 + 15) \log_{10} 2 = 0.51 + 0.0108$$

or about 0.52 volts, the zinc negative, as before.

- (2) The second, on account of the approximate equality of the velocities of copper and of zinc [Table 2], will be negligible if the copper and zinc solution has the same concentration; if not, its value may be obtained from equation (18 δ).
- (3) The third is similar to the first, for normal copper sulphate solution amounting to 0.60 volts, the metal positive; increase in concentration of the electrolyte increases this value, and conversely, according to the equation (15c), just quoted for zinc sulphate.
- (4) The value of the fourth E.M.F. is given in Table 3. It may be neglected in comparison with the others, being less than the thousandth of a volt.

Addit

Zinc

and the effectrolytes

In conpractically quoted who lyte (in the largest term

whose E.M. value for a depends of silver nitra solution it that substa dissolve is p. 238). Vis simply tration is grant to the substance of th

Where tion, may l concentrati potassium

^{*} W. Ner

[†]Kohlran 1893, have es trical conduct

the known ve