Lamprophyres.

The number of fine-grained dark dykes is large and specimens have Dark dykes been taken from a comparatively small number of those whose macroscopic appearance is quite uniform.

Plagioclase feldspar appears in all with one or more of the ferromagnesian minerals. Hornblende usually predominates, but both augite and biotite are in some cases prominent essential constituents. Consequently the chief type that is clearly distinguishable is camptonite, although it is probable that a microscopic examination of all the dykes wold reveal the presence of allied mica-bearing and augitic types.

Theralite.

The dykes referred to this class (Nos. 10%, 107a, 175 et al) consist Coarse-of feldspar, (plagioclase), nepheline, hornblende, biotite and augite, wish accessory sphene, magnetite and apatite. The plagioclase has low extinction angles measured on the bite twinning lamelle. I am indebted to Dr. A. E. Barlow, petrog. pher of the Geological Survey, for the following gravity separations of the feldspars, as well as for certain other assistance with the dykes of this class.

The first feldspar that appears in the separation is in composite Feldspars. grains with a heavier constituent, which fell in large quantity when the density of the Thoulet solution was 2.714. On this being reduced to 2.699 a large number of composite grains fell and also a much smaller number of clear feldspar, presumably labradorite. After a further reduction of the solution to 2.651, the proportion of clear grains that appear is greater. Hence audesine is the chief feldspar present, as at 2.62 very little material fell, and that chiefly in composite or turbid grains.

The Hornblende is frequently light brown with a darker, or greenish Hornblende, rim, but both portions in such cases extinguish simultaneously. It is trichroic, the scheme of absorption being $\mathfrak{c}>\mathfrak{d}>\mathfrak{a}$. The maximum value observed for $\mathfrak{c}\wedge\mathfrak{c}$ was 13°.

The Nepheline has crystallized rather later than the feldspar and is Nepheline. thus the last mineral constituent to form; consequently its outlines are almost wholly allotriomorphic. Much of it is decomposed, the alteration product of which Dr. Barlow has determined to be 'an aggregate consisting of a radiating zeolite which possesses the optical properties of natrolite, in association with which there is also a con-