$\therefore (a) \frac{z}{a^{2} - b^{2}} + (b) \frac{x}{b^{2} - c^{2}} + (c) \frac{y}{c^{2} - a^{2}} = (a) + (b) + (c)$	Communications.
: by inspection $x=b^3-c^3$, $y=c^2-a^2$, $z=a^2-b^2$ will satisfy the equation and reduce it to an identity, and these values are easily verified on trial.	To the Editor of the CANADA SCHOOL JOURNAL.
7. (a) Book-work. (b) Let a, β ; K, p be the respective roots. $\therefore a+\beta=m-a, a\beta=b^2$; $K+p=b-m, Kp=a^2$ and $a-\beta=K-p$. Take $1+5$ and $1-5$ and $4a\beta=(m-a)^2-(K-p)^2=4b^2$. And from 3 and $4, (K-p)^2=(b-m^2)-4a^2$. Substitute in the last equation and $5(a^2-b^2)=2n\cdot(a-b)$ \therefore &c.	satisfaction to myself and many of my friends, for wo feel that the
8. Clear of fractions and we have to show that $(a-b)(1+ca+bc+abc^2)+anls=(a-b)(b-c)(c-a)$ i. c. $(a-b)(ca+bc+abc^2)+anls= \dots n \dots n; \therefore (a-b)+anls=0$. or $(ac-bc)(a+b+abc)+anls= (n) (n) (n) (n)$ i. c. $(ac-bc)(a+b)+anls= (n) (n) (n) \therefore (ac-bc)+anls=0$. or $(a^2-b^2)+anls=(a-b)(b-c)(c-a)$ which is true, \therefore &c. 2ND SOLUTION.—Nr. of sum= $(a-b)(1+bc)(1+ca)+anl+anl$. (a-b)(b-c)(c-a) is one factor of three dimensions, since the sum vanishes for $a=b, b=c$, or $c=a$. We may expect another factor of 2 to make up the required 5 dimensions. Hence put (a-b)(1+bc)(1+ca)+anls=(a-b)(b-c)(c-a)	The songs we have been accustomed to were of an elevating and refined nature, containing moral or patriotic sentiment, and we feel the subject has degenerated in the new books, which abound in trashy stuff such as "Mother Goose," and "Nursery Nonsense." I cannot see the force or benefit of instructing my pupils in that class of songs. It may be considered pardon- able in a book arranged for very young children who have to be taught by rote, but when the same kind of matter is intro- duced into 'he Second Reader—a book for advanced pupils—I consider it, to say the least, unsuitable. I hope you will notice
-See HANDBOOK, p. 229; CANADA SCHOOL JOURNAL, May No., p. 104. Putting $c=0$ and reducing we have $1-K(c^2+h^2)+O(ah)$; Numerators (a. h)(h. c)(a. c) and a	this point in your next issue, together with other palpable faults. Surely in the wide range of appropriate school songs something better could be found for <i>Grammar School</i> pupils than the one on
$1 = K(a^{2} + b^{2}) + Q(ab) ; \therefore \text{ Numerator} = (a-b)(b-c)(c-a) \text{ only.}$ 9. (1) I ÷ II gives $\frac{x^{2} - xy + y^{2}}{xy} = \frac{a}{b}$ $\therefore (x-y)^{3} \div (x+y)^{2} = (a-b) \div (a+3b)$	page 12, Second Reader : "There was a piper had a cow, And he had naught to give her, He pulled out his pipes and played her a tuno,
$\frac{x+y}{x-y} = \sqrt{\frac{a+3b}{a-b}}$ $\therefore x+y = \{\sqrt{(a+3b)} + \sqrt{(a-b)}\} \div \{\sqrt{(a+3b)} - \sqrt{(a-b)}\} = m, \text{ say,}$	And bade the cow consider. "The ccw considered very well, And gave the piper a penny," &c.
: $x = my$. And from II, $y = \beta' b \div \beta' (m^2 + m)$ &c. (2) $(x^4 - y^4)(x + y) \div (x - y) = a$ I.	Equally edifying with the above is the song on page 67 :
(2) $(x^{4} - y^{4})(x - y) \rightarrow (x^{2} - y) \rightarrow (x^{2} - y) \rightarrow (x^{2} - y) \rightarrow (x^{2} + y) = b$ II. $\therefore (x + y) \rightarrow (x - y) = y^{7} a \rightarrow y^{7} b = m, \text{ suppose.} (A.)$ $\therefore x \rightarrow y = (m+1) \rightarrow (m-1); x = y(m+1) \rightarrow (m-1)$ Substitute this value for x &c.	"Tom he was a piper's son, He learned to play when he was young ; But all the tunes that he could play Was 'Over the hills and far away."
Or, add and subtract I & II and put $y = 2x$.	These are two instances out of quite a large number of wishy-
(3) Cube by formula, p. 11, TEACHERS' HANDBOOK, and then $\sqrt[p]{(x-\sqrt{2})=0}$: $x=\sqrt{2}$, one solution.	washy songs which it is quite ridiculous to expect pupils who have long since quitted Babydom to sing with taste or even to learn.
Also $3\beta'(x + \sqrt{2}) = -\sqrt{2}$, $\therefore x = -\frac{2}{3}\gamma_1 \sqrt{2}$.	I cannot see that the Problem of Singing at Sight is any nearer
10. (1) $S=1-\frac{2}{m}+\frac{1}{m^2}-\&c S \div m=\frac{1}{m}-\frac{2}{m^2}+\&c.$	being solved now than it was before. It may be learned from the
$\therefore S(m+1) \div m = (m-2) \div (m-1), \text{ and } S = m(m-2) \div (m^2-1).$	"Normal Music Course," but certainly it will take harder study and logger time than can be devoted to it in our schools. The
(2) $S = 1 + 3 + 7 + \&c.$, $2S = 2 + 6 + 14 + \&c.$ $\therefore 2S - S = -1 - 1 - \&c. + (2^{n+1} - 2) = 2^{n+1} - (n+2).$	Ta-too-ing alone would occupy all the time we can spare, and it
(3) Put $n=1, 2, 3, 4$ respectively and we get the series req'd, $\frac{2}{5}, \frac{15}{5}, \frac{85}{5}$.	will require no small diligence on our part to learn that new language-evidently elementary Fiji. Yours, etc.,
11. $(n+1)(n)(n-1)(n-2) + \frac{1}{2} = 9(n)(n-1) + \frac{1}{2}$ $(n+1)(n-1) = 108 = (11+1)(11-2), \dots n = 11.$	City Teacher.
12. $(1+x)^n = 1 + nx + \&c. + x^n$, where n terms contains x \therefore there are $n+1$ terms altogether.	Special Articles.
(1) $(1-x)^{\frac{2}{3}} = 1 + \frac{2x}{3} + \frac{2.5 \cdot x^2}{1^2 \cdot 3^2} + \frac{2.5 \cdot 8 \cdot x^3}{1^3 \cdot 3^3} + \frac{2.5 \cdot 8 \cdot 11 \cdot x}{4 \cdot 3^4} + \&c.$ Ans. = 110x ⁴ + 243.	SOME WAYS TO ELEVATE THE TEACHERS' PROFESSION.
(2) The $(n+1)^{th}$ = middle term, since 2n is even.	BY H.MER B. SPRAGUE, PH. D.
This term is $\frac{ \frac{2n}{2n}}{2n}x^n$, which is reducible to 1, 3, 5($2n-1$) $2^nx^m \div \underline{n} $.	I. We should, perhaps, reverence more highly our calling. Wo
1, 3, 5 $(2n-1)2^n x^m \div \underline{n} $	should be more keenly alive to the fact that the most vital interests of any community is the right educaton of the young; that the greatest service that can be rendered to a child is to train him up
Page agastrilla the Decentration	in the way he should go; and that the five or six hours a day in

Canada School Journal Printing and Pub- or even the average parent possesses. lishing Company. Do not hesitate to take shares. secure.

Read carefully the Prospectus of the school give the instructor a greater opportunity than the minister,

II. Teachers should make themselves more worthy of respect, fitting themselves with the utmost care and with endless prinstak-The investment is profitable and ing for their work. This involves, among other things, a higher standard than now of the following requisites: