A soils of Hertfordshire. The following

| 1842. | 1843. | 1844. | 1845. | 1847

hthe same years, on the limestone soils of sthire, Mr. C. Charnock obtained the folfagresults (ibid, vol. x., p. 517):—

| 1842. | 1843. | 1845. | 1846. | 1847. | 1848. | 1849

lis noticeable from these trials how much the is the evaporation from the limestone of from the chalk; and how much less the face. The wind produces a far more conside amount than the mere heat of the sunterine-salt makers, who expose sea-water, parshallow ponds to the action of the attacker, are well aware how much faster the mere breezes evaporate the water than the 100 a still day; every washerwoman is aware the same fact. Mr. Charnock experimental-logon this question; and found that—

| 1842. | 1843. | 1844. | 1844. | 1845. | 1845. | 1846

Lit is not only the surface of the earth and raters from whence the insensible moisture in atmosphere is derived. Plants contri ecopiously, too, to the supply. It is certain spants of all kinds exhale moisture in large pations. Mr G. Philips (Joar. R. A. S., m, p. 306) found that the polyanthus, Manapot of earth, between the 28th of kaary and the 14th of April, 1845, evapo-\$201 grains of water daily for every square of surface of its tenves, the mould 10.8 in for every inch of surface: he found that a Ly, with sun and wind, always promoted evaphim, while a dull, cord day always retarded or ped it. The evaporation from the leaves of a to, under similar circumstances, was much bing at the rate of only 14 grains per reach square inch of surface. The transpira - austure from plants increases progres-I from March to August, after which period lines. It is the most copious from sun-rise 10,10, after which hour it lessens. Other ts emit moisture at a much greater rate than Myanthus or the potato. Hales found that somer transpired, in July and August, 15 grains of water from every square inch of its surface; a cabbage, under favorable circumstances, has been found to emit, daily, water equal to its own weight.

Need we attempt to calculate the enormous amount of aqueous vapor which the vegetable world thus contributes to our atmosphere? the whole covering of our Emareld Isles pouring in an incessant stream of moisture; the vogetation of all lands contributing their portion. The dense steaming forests of the equitorial regions adding perhaps the largest amount in a given space, enormous, though insensible streams, rivalling in their weight of water those of the Amazon and the Mississippi. From the vegetation of the whole world, in every clime, in every soil, and at every altitude, from the level of the sea up to the lines of eternal snow, by day and by night, is this out-pouring going on; no winds prevent its continuance, by no change of temperature is this invisible stream

of watery vapor entirely stayed. But the emission of vapor upon the air by the surface of the earth, its waters, and its vegetation, are not the only sources of the supply of atmospheric moisture. All animals contribute a considerable share. As I have elsewhere had occasion to remark, the evaporation from the surface and from the lungs of animals is very considerable; it varies, however in different species and individuals. Cruikshank calculated it from his experiments to average about 7 pints in a man, during the 24 hours; Lavoisier and Seguin made it amount to only 31 pints, the maximum being 5lbs, the minimum 13lbs. They calculated that, in every 18 parts of water thus evaporated, 7 parts were from the lungs, and 11 from the skin. Its amount is increased by drink, but not by solid food Its minimum amount is immediately after a meal, and in close, toggy weather: it attains its maximum during digestion. It is, as might be expected, the most considerable in warm and breezy weather, in hot climates, and after great exercise. This is indicated by the enormous quantity of liquid consumed by those who labor under such circumstances; the daily 14 pints of beer, the 24 pints of cider allowed to the reapers (Jour. R. A. S., vol. xiv., p. 445); and by the 30 pints of porter swallowed by the London coalwhippers-an amount which is often unequal to the loss they sustain by transpiration. The evaporation from labourers in certain situations, is, fact, enormous. Dr. Southwood Smith made some observatious upon the men employed in filling and emptying the Phoenix Gas Works. These men are thus engaged twice a day. On a foggy day in November, when the temperature of the external air was 39 degrees, the greatest loss of weight by these men in an hour and a quarter, was 2lbs. 15 ox.: and the average of eight men was 2lbs. 1 oz. On a bright day in the same month, when the temperature of the surrounding air was 60 deg., the greatest loss