The IAEA inspects state 1 with probability p and state 2 with probability 1-p. Let state i behave illegally with probability q_i , and legally with probability $1-q_i$, i=1, 2.

The unconditional expected payoffs are therefore

$$\begin{aligned}
& \left\{ \left[-a - (c - a)\beta_{1} \right] q_{1}(1 - q_{2}) - c(1 - q_{1})q_{2} + \left[-a(1 - \beta_{1}) - c\beta_{1} - c \right] q_{1}q_{2} \right\} p \\
& + \left\{ \left[-a - (c - a)\beta_{2} \right] q_{2}(1 - q_{1}) - c(1 - q_{2})q_{1} + \left[-a(1 - \beta_{2}) - c\beta_{2} - c \right] q_{1}q_{2} \right\} (1 - p) \\
&= (c - a)\left[(1 - \beta_{1})q_{1} - (1 - \beta_{2})q_{2} \right] \cdot p + (c - a)(1 - \beta_{2})q_{2} - c(q_{1} + q_{2}) \\
&= E_{0}(p, q_{1}, q_{2})
\end{aligned} \tag{2.4}$$

to the IAEA;

$$\begin{aligned}
&\{[-b_1 + (b_1 + d_1)\beta_1]q_1\}p + d_1q_1(1-p) \\
&= [-(b_1 + d_1)(1-\beta_1)p + d_1]q_1 \equiv E_1(p, q_1, q_2)
\end{aligned} (2.5)$$

to state 1; and

$$d_2q_2p + \{[-b_2 + (b_2 + d_2)\beta_2]q_2\}(1-p)$$

$$= [-(b_2 + d_2)(1-\beta_2)(1-p) + d_2]q_2 \equiv E_2(p, q_1, q_2)$$
(2.6)

to state 2.

We assume that the three players do not cooperate. Thus, we model our problem as a non-cooperative three-person game ($\{p\}$, $\{q_1\}$, $\{q_2\}$, F_0 , F_1 , F_2) with strategy sets and payoffs as given above. The equilibria (p^* , q_1^* , q_2^*) of this game are determined by the Nash conditions

$$E_{0}(p^{*}, q_{1}^{*}, q_{2}^{*}) \geq E_{0}(p, q_{1}^{*}, q_{2}^{*}) \forall p$$

$$E_{1}(p^{*}, q_{1}^{*}, q_{2}^{*}) \geq E_{1}(p^{*}, q_{1}, q_{2}^{*}) \forall q_{1}$$

$$E_{2}(p^{*}, q_{1}^{*}, q_{2}^{*}) \geq E_{2}(p^{*}, q_{1}^{*}, q_{2}) \forall q_{2}.$$
(2.7)

Using c-a>0 and (3.4), (3.5), and (3.6), these inequalities are equivalent to

$$[(1-\beta_1)q_1^* - (1-\beta_2)q_2^*] \cdot p^* \ge [(1-\beta_1)q_1^* - (1-\beta_2)q_2^*] \cdot p \ \forall p$$
 (2.8a)

$$[d_1 - (b_1 + d_1)(1 - \beta_1)p^*] \cdot q_1^* \ge [d_1 - (b_1 + d_1)(1 - \beta_1)p^*] \cdot q_1 \ \forall q_1$$
 (2.8b)

$$[d_2 - (b_2 + d_2)(1 - \beta_2)(1 - p^*)] \cdot q_2^*$$

$$\geq [d_2 - (b_2 + d_2)(1 - \beta_2)(1 - p^*)] \cdot q_2 \ \forall q_2.$$
(2.8c)

The theorem to follow generalizes results in [9].