1 1500

iorizon,

a. An
a few
or buckrally it
e straw
king inxcellent
al sow
on the
I knew
ted, the

es, and ad this

eighbor-

was the erennial

es apart

en on a

mal in

nsidious

arm be-

ned that

inty of thistle

verance,

kely to

farmers

of it, as

tle. To

ared to

ere the

e multi-

cultivat-

previous

othered.

ved, pre-

ed send-

is treat-

rop that

tstocks.

eing cut

ate this

re in a

eans to the farm

ught for

th oats.

han the

in mind

required ltiplicity

nessed a

this fiend

arms in

farmers

his most

ter pro-

spreading

ootstocks n of Dor-lights in

run they

ARIAN.

ply. *

ange, the istributed irplus fall

eption to

arket lies

a strong

rplus this

ed short-

d drouth.

red of as

outcome

is giving

t is ever

vy actual

ing period

raised in bids fair

end of the

appear in

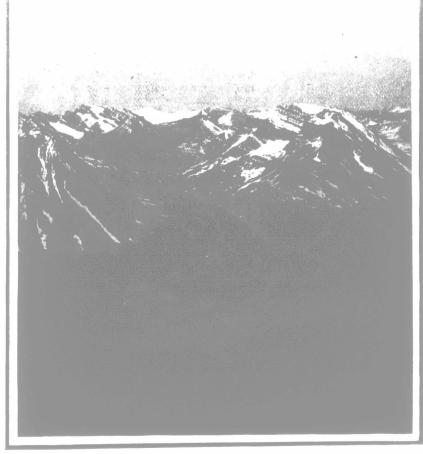
Influence of Forest on Climate and Water Supply.

On this continent nearly all state ments as to the influence of the forest on climate and waterflow are general. In Europe more extended and de tailed observations have formed a basis for definite conclusions.

The discussion first began in France, when in 1789 the success of the Revolutionary party led to the removal of the restrictions on the cutting of private woodlands, and a subsequent wholesale clearing of large areas. early as 1792 a change in the climatic conditions was observed, and shortly after that time investigations by two distinguished scientists, Becquerel and Krutsch, were begun in France and Germany. For a long time results were not satisfactory, owing to the difficulty of taking observations, but about forty years ago a system was devised of having observing stations within the forest, and similar stations at some distance from the forest, so that results might be compared. means the difference between the heat try and that in the open country may be learned. Where all other conditions are equal, the difference is ascribed to the presence of the forest.

Climate is the average weather condition, and is dependent upon the distance of the locality from the equator, the elevation above sea level, the distribution of land and water, the character of the country, whether level or mountainous, whether vegetated or barren, the winds, and the moisture of the atmosphere. The factors which the forest may influence are the surface cover, moisture and wind. Upon the surface cover, which influences the heat, and upon the moisture and wind are dependent the changes in climate which are most evident to human beings.

The influence of the forest on these climatic factors is evident in the following ways: The forest as it stands prevents the sunshine and rain from freely reaching the earth, is a barrier


to air currents, and diminishes the radiation of heat from the earth at night. The trees and the vegetation which accompanies them produce large quantities of vegetable mould or duff, which checks and reduces extremes of waterflow in the ground.

These forest influences extend more or less to the temperature of the air, the evaporation and transpiration of water from the earth, the rainfall and the disposal of rain water after it has reached the earth.

Many scientists will not admit that the temperature is affected by the presence of forest growth. Such observations as have been made go to show that it is only affected to a few degrees, and only by the presence of so much vegetable matter as is contained in the forest. The trunks, branches and leaves of a tree contain a

to 70% water. Water raise its temperature one degree than almost any other substance, pound for pound. Thus, while bare soil or rock would be heated under the inleaves and trees, largely water, would absorb the heat without showing much change in temwhile the hot soil or est cover is still abcool. Further, the all vegetation give off evaporation of this water requires heat which is absorbed from the air.

in the forest sinks to the ground and a rising current of warm air takes dows off along the surface of the ground into the country, and thus local breezes are form of the forest felt at

Effects of Erosion.

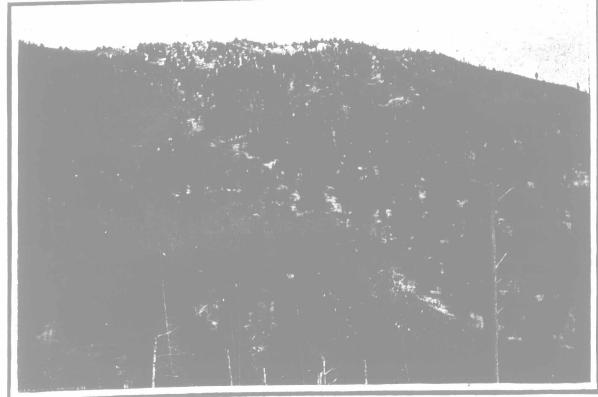
Where there is no timber on the mountains, there is nothing to protect the soil or hold the water.

> some distance. At night the currents are re- water in a forest is only 40% of that from then flows from the open country to the forest; thus the forest checks extremes of temperature both at night and day. When this cooling of the air has been measured it has been found greatest in summer and of more effect in the mountains than on the level plains.

Results of investigation in Bavaria show that the lowest daily temperature for a year was 2° higher in the forest than in the open country, while the highest daily temperature was on an average lower by 4°. The same observations showed that the hottest day in summer was 7½° cooler in a forested country, and that the coldest large proportion of water, the leaves being 50% day in winter was 3° warmer.

These figures are for Central Europe; there are none for America, but the same principles govern on both continents, and as we are in a country of greater extremes and more rapid changes of climate, we may expect to find that the forest has even more influence here in Canada than where the question has been studied in Europe.

The humidity of the air in the forest is greater than that of the air outside. The actual weight of water vapor in a cubic foot of forest air is the same as that of a cubic foot of air in the open country under similar conditionsbut as the forest air is cooler, its capacity to contain moisture is less. Swiss experiments show that the relative humidity of forest air is 3% to 10% greater than outside air. This is the reason that dew is more frequent near timber than at a distance.


The presence of forest has but little influence on the quantity of rainfall in a district. The chief causes of rainfall are the great currents of warm and cold water in the ocean, the presence or absence of large bodies of water and mountain ranges, and the direction of the prevailing winds. Forests are cooler than the surrounding country and obstruct the winds, and, consequently, may influence local showers. European and Indian observations encourage the belief that forests in this manner increase the annual rainfall by about 10

The forest has a greater effect in preventing the evaporation of water than in increasing the rainfall. The air of the forest being cooler cannot absorb moisture as quickly as the warmer air The forest also of the open country. retards air currents and obstructs winds, which, when blowing quickly, dry the plains and open fields. In this respect, the forest is of far more influence than the wind-breaks commonly planted. Bavarian experiments show that the evaporation from an open surface of

versed, the forest checks the radiation of the the same body of water in the open. The earth's heat, and the air in the forest becomes influence of the forest to prevent evaporation warmer than that in the open. The colder air increases with the elevation of the country above This furnishes justification or reason sea level. for the Government reserving the forests at the headwaters of streams in mountain regions. In the Rockies a large proportion of the water evaporates before it reaches the streams; especially is this the case when the snow is going off in Large snowbanks evaporate withthe summer. out wetting the ground around them. ments by the United States Geological Survey have proven that when exposed to the sun the snow evaporates at least four times faster than water. Where water is important for irrigation this is a serious consideration.

The chief influence of the forest is in modifying the run-off of the water

after it has fallen. From 10% to 25% of the rain falling in a forested country is held by the branches and the leaves of the trees. This is later evaporated, and tends to keep the air moist. The water which reacnes the ground is ansorbed by the decayed vegetable matter and soit permeable soil, as it would be by a sponge two inches to two feet thick spread over the whole surface of the land. Such a soil will hold a live-inch rainfall before it becomes saturated. The water thus held slowly soaks into the subsoil, is held as a reservoir to support vegetation, or seeps away to feed springs and streams. None of it is wasted or lost. When rain falls upon a bare slope, the result is different; it does not sink into the ground half so readily, but immediately runs off the surface in rivulets and creates floods. Investigations by the United States Forest Service

Trees Retard Evaporation and Run-off.

Where there are no trees, the snow has melted and evaporated. Where there is a shelter of trees, the show banks still remain. Crow's Nest Valley, Alberta.