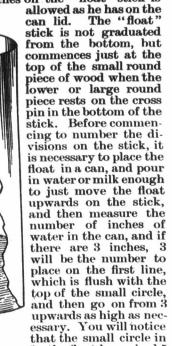
Annandale Herd Record.

heated and spoiled on the top and around the sides? The corn was cut green and stooked for a time in the field, but was neither sprinkled with water nor the field, but was neither sprinkled with water nor covered in any way after having been cut and placed in silo. We now find that about 3½ feet of corn on top and about 1 foot around the walls all the way down is so mouldy as to be unfit for use, and cannot understand where the trouble has arisen. Have spoken to others who have experienced the same difficulty, as well as some who have not. Could it be that the ensilage was not sufficiently tramped when filling?

Ottawa Co., Ont.


Ottawa Co., Ont. [When ensilage moulds it is because of the admission of air, either by reason of the silo being defective or the corn being too dry to pack tightly. The latter would seem to be the cause in this particular case, as the top few feet is mouldy as well as the sides. We believe the corn should have been moistened and thoroughly tramped around the outer edge. The question is open for discussion.—EDITOR.]

Float for Overcoming the Froth Difficulty in Creamery Skim Milk.

To the Editor FARMER'S ADVOCATE:

SIR,-I herewith send you a sketch of a device I have used very successfully for overcoming the trouble we have in all creameries with the froth when dealing out the skim milk to patrons. There have been various devices gotten up for the equal distribution of the skim milk, such as measuring cans, check pumps and automatic weighers, and weighers that were not automatic, and they all have weigners that were not address. The their advocates; but for simplicity, cheapness, and general good results, the "float" is ahead of anything I have yet tried. Creamerymen all know that there is no other one thing over which patrons do so much kicking as over shortage in skim milk, and it is something for which no provision whatever, usually, is made, and the creamery manager has to fight it out with the patrons as best he can. The "automatic weigher" is undoubtedly the best, as it deals out simple justice to everybody, but they are too expensive for the common run of creameries, and the "measuring cans" are only guessing machines when the froth is bad, besides requiring an extra hand to attend to them, but the large majority have nothing, and to them I think the "float" will be welcome.

First of all, a measuring stick for the whole milk is required, about 3½ feet long and 1 inch square, and divided off into inches and plainly marked from 1 up to 36. When the patron or milkdrawer drives up to the weigh-stand, he pulls off the cover and measures the milk, holding the stick in the center of the can, and records the number of inches on the top of the cover with a suitable pencil, which is provided; he goes over his whole load in this way, which only takes a very short time, then when he goes to the skim milk tap he knows just how much is to be put into each can, as the measuring stick in the float is divided off into spaces less than one inch (13-16 of an inch is what I allow), and the same number of inches on the "float" stick is

sketch is just at the figure 8, the float has raised 5 inches, and there was 3 inches in before it reached the float, which makes 8 inches of milk. If there is much froth in the milk the large circle will be buried out of sight, and it might appear as if there were 12 inches of milk, but if the float works free on the stick it will never fail to indicate the right

The float is made out of inch pine or basswood, and can be made round or square; the top circle is held in place by three or four wooden spindles, which go into the lower one; the hook on top is to hang it up by when not in use. Some may object to it because we are still at the mercy of the man taking the milk. True enough, but I find that the great majority of milk-drawers and patrons only want what belongs to them, and the other fellows we have to watch, of course, but in my experience with it I have had no trouble, and everybody is J. STONEHOUSE. Ontario Co., Ont., Jan. 2, 1899.

A subscriber wishes to know why Mr. Tillson reports his herd of 55 cows giving an increased profit of \$7.70 per head over last year's product in the FARMER'S ADVOCATE, while in another paper he claims a profit of \$8 per head for the same time, to which Mr. Tillson replies as follows:

In the one statement I included my best cow,

which was not yet dry, but had 2½ months more to put in, anticipating that at the end of her milking season, 24 months from that time, she would have given 20,000 lbs. of milk, which would make the gain as I stated. In my report to the ADVOCATE I left my best cow out of the calculation, and that makes just the difference between the two statements. reason for making the change was, I thought I should need the big cow to go in with the balance of the herd in order to make the whole herd, 55 cows) hold up my record to the amount stated for E. D. TILLSON. the end of the year. Oxford County, Ont.

P. S.—My big cow has now milked another month, making 18,900 lbs. of milk, and is still giving 30 lbs. per day, so we feel quite sure of the 20,000 lbs. E. D. T.

POULTRY.

Nest Boxes for the Henhouse.

The accompanying figures of nest boxes represent two forms, either of which answers well to prevent egg-eating, and are convenient to keep clean, gather the eggs from and keep in general good order. They do not take up much room and are easily constructed. Fig. I., reproduced from Artificial Incubating and Brooding, is made by two one-foot boards for the bottom and one-foot boards for the bottom and one-foot boards for the side boards incide the tax for the sides. Nail the side boards inside the top



FIG. I.—FLAT-TOPPED NEST BOX.

and bottom, leaving a space of 22 inches between. Divide the nests with one-foot square boards, leaving the nests one foot in the clear. Nail a two-inch strip on top and bottom edge of the partitions to hold them in place. The balance of the space is for the alley. The nests serve two good purposes—they stop egg-eating by being dark, and the hens are out of sight while they are laying. The flat top of this nest box has the disadvantage of allowing the hens to deposit their droppings on the top. The box may stand on the floor, where it would be suitable for heavy breeds of fowls, or it could be elevated as desired.

Fig. II. represents a sort of nest box we saw in use in a new henhouse on the farm of Gilmore Bros., at Nilestown, Ont. It extends along the entire length of one side of the house, and is about

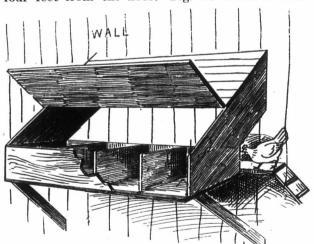


FIG. II,-NEST BOX AGAINST WALL.

section of it which gives a fair idea of the construction. The hens can enter at either end. The hinged lid is in sections, each covering three to four nests. The hens do not have to fly up to lay, as the cut shows the board on which they walk up. Because of the slanting roof or top the fowls cannot perch on the top and leave their droppings.

Milton to the "Fore."

In your issue of March 1, 1899, page 124, I notice record of egg production from 45 hens in 44 days—660 eggs. Mr. Adam McKay, of Milton, Ont., has 18 hens that he reports having yielded 515 eggs since January 17, 1899, to date, March 6, 48 days. Pretty good; 113 eggs per day on an average.

Setting the Hen.

In the ordinary, rather indifferent practice of caring for farm poultry, full hatches of all the eggs set are not generally expected, but to those who have very carefully selected a breeding-pen of layers of eggs to set, or have paid out good money for a few settings of eggs, the failure of a number of the eggs to incubate is quite a serious disappointment. It depends in a great measure upon ourselves whether we get a large flock of early chicks or not. The hens that lay all winter are the ones that do the early sitting, and it is on the care of these, while sitting in cold weather, that our success depends.

It is well to have a warm, pleasant building with windows facing the south for a hatching house. In order to protect the sitting hens from the molestation of layers and other disturbing agencies, the pen should, if practicable, be divided into compartments five or six feet long by two feet wide. At the end of each compartment should be placed a covered nest box about 18 inches square. Woven wire answers well for the partitions. The partitions need not extend more than three feet high if the wire netting is extended over the top to keep the sitter in and other fowls out. In each compartment should be a pan of water, plenty of coarse sand and grit, besides a constant supply of mixed grain.

When two or three hens become broody, each should be given a thorough dusting with insect powder and set at night on as many eggs as she can cover well, but not more than twelve. The eggs should be carefully selected, of even, large size and color, rejecting any that are abnormal in size or form, and not more than about ten days laid. When the hens are put on the eggs they should be enclosed in the nests for a day or so and then allowed to come off as they please, in their compartments, for food, water and exercise. It is sometimes necessary to shut them up a second time, but usually when a hen is free from lice she will stick to her nest faithfully. If the eggs have been laid by a pen of about a dozen vigorous young hens, that have been kept with the society of a good male, changed from pen to pen once a week, it is seldom necessary to examine the eggs in a week or more to see that none are infertile. The result should be a good percentage of live chicks at the end of three weeks.

When the batch of hens set at one time bring off their broods, the chicks may be given to a less number of hens, or a brooder may be used, and the hens set with more eggs, as it does not harm a hen to bring off two or three broods of chicks. When a hen is to be set again her chicks, if to be raised in a brooder, should be removed from the nest soon after hatched and more eggs given her at once. The chicks may be kept in a flannel-lined blanket near the stove till they can eat well. They may then be transferred to a brooder, which should be kept at 80 to 90 degrees for the first three weeks, when a lower temperature will suffice.

VETERINARY.

Dr. Mole Replies to Dr. Simpson re Anthrax in Calves.

To the Editor FARMER'S ADVOCATE:

DEAR SIR.—It would scarcely be necessary to answer Mr. Thos. V. Simpson's letter in your paper of February 15th, entitled "Anthrax in Calves," only that he points to a communication from Mr. Duckham, Holmer, Hampshire, England, to not Prof. Pemberthy, of the Royal Veterinary College, who inoculated the stock against "anthrax." Prof. Pemberthy was not a professor, neither was he a member of the profession 20 years ago, if my memory serves me correctly. With regard to the stock in question, it is not quite determined, even now, whether the disease in question was symptomatic anthrax (black leg) or anthrax, and for all clinical purposes not any difference. It is very doubtful if my young friend could himself distinguish the two diseases, or if he has ever seen both. If he has, it is more surprising that he should have the temerity to differentiate between the two diseases. There is no more difficult subject to handle than histology, and picking bacteria from diseased tissue is not quite so easy as talking about it, and requires a little more intelligence than sort-ing letters out of a basket. I am indeed surprised to learn that anthrax is not black leg, nor is black leg anthrax. I have always thought, and in fact I am quite sure, that they are both blood diseases of an anthracoid nature, with no more difference than my two fingers that hold the pen. Again, I should be glad to learn the authority from where he derived the remarkable information that 47,000 animals died from anthrax in Novogorod, Russia. I have at all times coveted fair criticisms, but am not disposed to take captious advice from one in my own profession. W. Mole, M. R. C. V. S.

Cracked Heels.

To cure a stubborn case of cracked heels in a horse, he should be rested and given a loose box; then poultice the heel with bran and linseed. After removing all dirt, apply the following liniment: Lard, 4 ozs.; oxide of zinc, 1 oz.; carbolic acid, ½ oz. This should be applied every day until quite well. Do not wash the animal's legs, but brush all the mud off and bandage nightly. A physic followed by a course of torizer about also size. lowed by a course of tonics should also be given.