

Technique	Key Uses	Key Benefits	Equipment Highlights
Scanning Auger Microscopy (SAM)	 Microanalysis in the upper few atomic layers Elemental analysis from Be to U at ≤0.1 at. % May provide chemical-state information in favourable cases 	 High spatial resolution from a well-focused electron beam, point analyses and 'line scans' Depth resolution on the order of a few atomic layers Secondary electron imaging and elemental mapping Relatively fast semi-quantitative analyses Compositional depth profiles in instruments equipped with ion guns 	 Perkin Elmer PHI 670 Auger Nanoprobe in Class C Radioisotope Laboratory Schottky field-emission electron gun for high brightness and spatial resolution Ion gun for sputter removal of surface layers and Zalar Rotation for high performance depth profiling In-situ fracture stage for fracturing samples under ultra-high vacuum (minimal surface contamination) Noran EDX system for X-ray analysis (B to U)
Scanning Electron Microscopy (SEM) and Energy/Wavelength Dispersive X-Ray (EDX/WDX) Microanalysis	 High spatial resolution image of surface morphology Elemental analysis from C to U at ≤0.1 at. % 	 Exceptional spatial resolution and depth of field An effective physical image of the sample when detecting secondary electrons Atomic number contrast in sample when detecting backscattered electrons Quick semi-quantitative elemental analysis 	 JEOL 5400 SEM with EDX, capable of light element detection, for analysis of inactive materials JEOL 840A SEM with Noran EDX system housed in Class C Radioisotope Laboratory A shielded JEOL 840A SEM, in a licensed facility, with a Noran EDX system and two WDX spectrometers for characterization of highly radioactive materials
Secondary Ion Mass Spectrometry (SIMS)	 Depth profiling lon imaging Quantitative microanalysis, with ppm sensitivity, using appropriate standards 	 ppm sensitivity Isotopic analysis Detection of all elements, including hydrogen Compositional depth profiles with excellent depth resolution Ion imaging with sub-micron spatial resolution 	 CAMECA IMS 6F ion microanalyzer modified to accommodate radioactive materials Instrument housed in Class B Radioisotope Laboratory Both Cs⁺ and duoplasmatron (oxygen) ion sources Can be operated as either an ion microprobe or ion microscope