W. C. Bray

sulphate equivalent to the free iodine liberated in 10 cc of the reacting mixture during that period.

The numbers under "T(1)," "T(5)," etc., are obtained from Tables, 1, 5, etc., by interpolation, and give the number of minutes in which the amount of iodine entered under "100x" was liberated in the experiments of those tables.

 $R = 100 dx/d\theta$ is the initial rate, *i. c.*, the number of cc n/100 iodine liberated per minute in 10 cc of a reacting mixture of the composition given at the head of the table. It is obtained by multiplying the concentration of the substance present in small quantity by k_i . Finally, k_i is the "constant of the first order"; if the potassium chlorate be present in small quantity, $k_i = 1/\theta \log$ nat A/(A-x).

Results of the Experiments

Series A. Acceleration by iron

In Expts. 1 and 2 the initial concentrations of the chlorate, iodide, and acid were the same, but in Ex. 2 a little ferrous sulphate (equivalent to $2\frac{1}{2}$ percent of the chlorate) was added. This slight addition multiplied the rate by 13.

In the case of Expts. 3 and 4 the acceleration is still more marked.

EXPTS. 1 AND 2.

A 1.0; B 8.75; C 8.85; FeSO, Ex. (1) none, Ex. (2) 0.025.

A 1.0, D 0.75, C 0.057							
I.	100 .t.	$k_1 imes$ 10 ⁴	k ₁ corr.	2.0	100 X	T(1)	Τ, θ
		- 90	6.07	10	8.6	120	12
42	3.2	7.80	0.97	2.4	28.1	445	13
122	9.3	8.00		34	40.4	950	13
188	13.4	7.66	7.28	10	65.03	1580	14
194	13.9	7.73		100	71.2	1840	13
287	19.9	7.73	_	141	71.3	1040	
335	22.5	7.61	7.25	172	77.5		
454	28.9	7.52	7.25	204	72.0		
655	38.5	7.41			-		
722	41.5	7.30	7.25		· · ·		
133	62.6	6.79			1	-	
1404	62.0	6.84					
1493	72.2	6.70	7.34		-	-	
1003	14.3	0.70	101			1	

98