For the point n is the ultimate intersection of the intersections of the lines ab ... n and a'b' ... n meeting upon the curve line Bdef ... hikD', (prop. 2 and 3.) Now from the points A, describe through n the arc an, meeting the arc BD in the point n—it is evident that the distance An is equal to the distance An, (Fig. 5.) Therefore the distance An will be equal to the determinate length of the circumference of

the eirele ABD, (Fig. 4.)

The intersection of the straight lines ab and a'b' in the point D, is independent of the nature of the curve line or are BD'—for let BD', be any curve line described between the circular are BD', and the curve line Bdef ... hikD, and describe the arcs BK' and BK, similar and equal to such curve line, it is evident that when the curve lines BK' and BK, come each to coincide with the similar and equal curve line BD'—the variations de'' and ef''—kk'' and ii'', must be the variations of the intercepted are dk of the curve line BD'—and as the intersection n, of ab and ab', must be the ultimate intersection on dk, the point n consequently must be upon the intersection of the arc nN, (Fig. 5), and the curve line BD'; therefore this solution must be independent of the nature of the curve line BD'.

Case Second.—When the arc Bdef ... hikD', is the arc of a circle of the radius AC, described, through the points B and D'—intersecting either of the serie. of arcs 1K or 1"K only, (Lem. 3, Fig. 5.)

SOLUTION FOURTH.

PROPOSITION 5.

THEOREM.

FIG. 8. Bisect the are CD in the point D', and with the radius AC, describe through the points B and D' the are BD', intersecting the arcs 1T, 2S, 3R, 4'Q, 3'O and 2'K, in the points def ... hik. Then from the points C, with the distance Ce and Cf describe the are ee' meeting the are 1T, in the point e' and the arc 2S, in the point f'. Then from C as a center, with the distances Ck, Ci, Ch, &c., describe the arcs 2'K', 3'O', and 4'Q', &c.,—and from the same center with the distances Cd, Ce, and Cf, &c., describe the arcs 1"T', 2"S', and 3"R', &c.—Then through the points B and K', and B and K, describe the arcs BK' and BK, meeting the arc CD in the points K' and K; also from the point D' as a center with the distances D'e', and D'f', describe the arcs e'e' and ff; "the point e" shall be the variation of d towards e", and f" the variation of e towards f'.

For in the same manner we have by (Fig. 7,)—The arc tu" is the variation of t towards n, and nv" is the variation of n towards v on the arc BK—and t's" is the variation of t' towards s, and sr" is the variation of s towards r, on the arc BK. Now let the arc BK', move on the center B towards the arc BC, till it coincides with the arc BD'—the variation tu" must coincide with the arc of variation de", and also the arc of variation nv" must coincide with the arc of variation de", such arc BK, move on the center B towards the arc BD till it coincides with the arc BD'; the variation t's" must coincide with the arc bn'; hence the arcs de" and ef'', are the variations on the common arc of intersections dk of the arc BD'.

PROPOSITION 6.

THEOREM.

FIG. 8. From the point D', with the distances D'e" and D'f", and from the point B with the distances Bk, and Bi, describe the intersections a and b; and through the points a and b, draw the straight line abn, meeting the circular are BD' in the point n, and join A and n; the distance An, shall be the determinate length of the circumference of the circle ABD, (Fig. 4.)

For it has been demonstrated, (prop. 1,) that the point n, must be the point of ultimate intersection of the line ab, &c., or of all the intersections described through the series of points of variation e'' and f'', &c., and through the points k and i, &c.—through which the curve line ab. n, will coincide with its chord an, (Lem. 10.) Therefore the point n must also be on the intersection of the arc nN, (Lem. 3.), and the circular arc BD'; and An must be equal to An, and equal to the circumference of

the circle ABD, (Fig. 4.)