THE MYSTERIOUS IN BOILER EXPLOSIONS.

There is beyond question an element of mystery attending certain boiler explosions. At one time all explosions of boilers. save those which obviously resulted from shortness of water or extensive corrosion of plates, were regarded as mysterious and remarkable. Theories have been formed almost without number to account for their occurrence—in a word, to solve the mystery. The spheroidal theory of Boutigny d'Evreux may be cited as an When water is dropped on a hot plate it assumes the spheroidal condition, runs about in drops, and evaporates slowly. The drops are really not in contact with the plate at the time, each drop being enveloped in an atmosphere of its own vapor. When the plate cools the water touches it and flashes into steam. It was supposed that under certain circumstances water assumed the spheroidal condition in normal steam generators, and that a great development of steam ensued when the furnace plates cooled a little; so much steam being made thus in a few seconds that the boiler burst. This idea is now well known to be fallacious.

Another theory was that if a boiler was heated red hot and cold water pumped in it would infallibly explode; this is obviously the tail end o' the spheroidal theory. Inasmuch as the specific heat of iron is but one-ninth that of water, in round numbers it follows that nine pounds of iron heated to about 1,500° must give up their heat to make one pound of steam; and it has never yet been shown how enough red hot iron could be present in a boiler to cause a development of steam with which the safety valve could not deal. Many experiments have been carried out to test the point, with negative results as far as ex-

plosions are concerned

The electrical theory was broached. What this meant we never understood, nor did we ever meet any one who did. One gentleman promised to prevent all explosions from this cause by incasing every boiler in thin sheet copper. Another proposed to fit conducting wires to put boilers in communication with the earth. The notion that water was decomposed into oxygen and hydrogen, and subsequently recomposed with a terrible explosion, kept its ground for a long time. We believe we may say that no engineer possessing a moderate knowledge of chemistry holds such a theory now. The inspecting engineers of the various boiler insurance and assurance companies were the first to place the whole subject on a sound footing. They showed as a result of their experience that boilers burst because they were too weak to withstand the strains brought on them by the internal pressure. They proved that in the vast majority of cases furrowing, and grooving, and corrosion in all their multifarious forms, were the agents operating to bring about boiler explosions, and they carried back such catastrophes from the regions of romance to those of every-day life. There is some reason, however, to fear that these gentlemen have gone a little too far; and that by assigning all boiler explosions to one cause they are doing harm and stopping inquiry into certain secrets of nature about which we do not know quite so much as is desirable.

That by far the larger number of explosions which occur every year in England are due to weakness of the boilers which give way, either congenital or acquired, we should be the last to dispute. But it is equally indisputable that events take place now and then which quite upset all conclusions based on the idea that explosions always take place because a boiler is too weak to withstand normal strains, and these said events apparently contradict much that sound scientific authorities teach. Thus, for example, although the entrance of cold water into a red hot boiler ought not to cause an explosion, yet there is one case at least on record in which, on a pail of cold water being poured suddenly into a red hot kitchen boiler, a most violent and disastrous explosion took place. The weight of metal engaged here was, however, very great as compared with that of the water. It is also shown that explosions have ensued when water was pumped into plain cylindrical externally fired boilers, which had been allowed to

run short.

On the other hand, boilers patched and re-patched, and seemingly worthless, have by the hundred done their duty for years without a catastrophe, while boilers as well made as possible, and in excellent condition-nearly new, in fact-have exploded with disastrous results. So long as furrowing and corrosion are present it is easy to account for the failure of a boiler. It is when explosions of strong boilers occur that inspectors are at fault, differences of opinion arise, and we become enveloped in an atmosphere of mystery out of which it is difficult to find the path which leads to certainty. Two notable examples of this have been recently recorded in our columns; one is the Coltness explosion, when six boilers out of ten flew away at once like a covey of birds; the other is the Kersley explosion, when one boiler out of eight burst, leaving the rest intact.

As regards the Coltness explosion, that, as is well known, has been explained by Mr. Fletcher on the theory that one boiler which exploded first had the steam pine plugged up, and consequently gave way from a sheer accumulation of pressure. cannot find that one tittle of definite evidence was adduced to show that any such plugging took place. Mr. Fletcher is, no doubt, satisfied on this point, but we are not. In fact his theory is based on pure assumption. But, granting that he was right, how are we to account for the explosion of the remaining five boilers? One explanation is that the boilers were bedded so close that they rested against each other, and that each boiler as it gave way staved in the side of the next one to it. To make this an intelligible cause of explosion, it must be assumed that the sudden reduction of pressure on the outrush of steam through the side of the broken boiler caused so large a portion of the contained water to flash into steam that the boiler flew into pieces before the steam so produced could escape. But it is well known that the Coltness boilers were strong enough to stand a pressure of 300 pounds on the square inch, and it is difficult, if not impossible, to see how steam of any pressure like this could be pro-Only as much water would be converted into steam as would suffice to restore the pressure in the boiler to something less than what it was before the rent took place. To assume anything else is also to assume that once the process of flashing is established it will go on regardless of the pressure set up. This is a very important assumption; nay, more, it is a complete begging of the question. If it can be shown conclusively that the stored-up energy in a boiler can all be expended in flash. ing water into steam, if flashing is once fairly set up, without any consideration for the accumulation of that pressure which is inimical to the operation of the flashing function, then we are face to face with a new physical law which would clear awsy much mystery, and set boiler explosions, like that at Coltness, in a totally new light. It is a notorious fact that a great many explosions take place just when an engine is started. If we may assume that the sudden reduction of pressure sets up flashing, and that the process is continued by, if we may use the words, its own vis viva, then it is easy to understand why a sudden reduction in pressure may cause an explosion; but until some definite statement of facts is available, we must hold this idea to be pure, little supported, theory, and nothing else. If we are asked, how, if we reject the theories of Mr. Fletcher and others, we explain the Coltness explosion, we reply that we cannot explain it, because there is not sufficient evidence available on which to base an opinion.

In the Kersley explosion we have a boiler, insured, carefully looked after, and apparently sound, going to pieces without having given warning in the way of leakage. Here again we find holler inspectors dealing largely in pure assumption. Mr. Hiller, the engineer of the National Insurance Company, took it for granted that an albem with the tendence of the National Insurance Company. it for granted that an elbow pipe was broken off and let the water run cut. But there is not a scrap of evidence that a cast-iron pipe was broken as supposed. Mr. Baldwin, another boiler inspecting engineer, holds that Mr. Hiller is quite wrong, and that the boiler burst because the plates had become weakened by age; that they had "lost their nature," to use a word well known among iron makers. But even Mr. Baldwin finds all the plates he tested so strong that the boiler should have withstood on the lowest calculation double the pressure at which it was worked.

It is to be presumed that the inspecting engineers of boiler insurance companies are the greatest authorities in existence on all that pertains to the life and death of steam generators. When we find any one of these gentlemen unable to form any opinion concerning certain catastrophes, which is not flatly contradicted by a professional brother, it would be folly to deny that there are mysterious boiler explosions—that is to say, explosions which occur from some cause or causes unascertainable. That we shall always remain in our present ignorance is very improbable. But we venture to think that the solution of our difficulties will come, not from the boilermaker or the engineer, but from an elaborate process of physical research into the laws which govern the generation and evolution from heated liquids of their steams of vapors. Many suggestive phenomena have been recorded which might serve to direct an inquirer. For example, the behavior of water heated under oil is, as shown by Dr. Frost many years ago, very curious and suggestive. Again, water may have its boiling point altered by various conditions other than those of pressure. It is not too much to say that although the more prominent aspects of evaporation and ebullition have been carefully studied, a great deal remains to be learned concerning the real nature of processes about which may exceled the concerning the real nature of the concerning the real nature of processes about which may exceled the concerning the real nature of the concerning the real nature of processes about which may exceled the concerning the real nature of the concerning the concerning the real nature of the concerning th processes about which men speak all the more glibly the less they

really know .- The Engineer.