On deep rivers with 1 onsiderablo currents these difficulties bave been found to be of no practical importance. In beuds the current greatly assists the steering power of the tur, throwing the vessel powerfully towards tho outside of the curve, and thus counteracting the tendency of the rope to pull it towards the inside. This not only helps to keop the boat in its proper water-course, but nssists also the action of ruplacing the ropo in its correct position. With regard to kinks, tho considerablo dopth through which the back ropo has to sink down from the last guide pulley to the bottom of the river regulates up to a certain point tho delivery of slack rope. I'ho graster speed admissible on deep rivers fiually increases the stecring and staying power of the tog $4 \|$ this is different on shallow rivers and canals, with their sharp and frequent bends, vant of current, and slow admissible speed. Hers the difficulties of kinks in the slack rope, the want of stcering power, the consequent impossibility of replacing the rope in its original position when displaced by the direct pull of the tug, and therefore the incapability of the tur to round sharp curies readily, after a fuw working trips, have proved, up to lately, fatal to the introduction of wire-rope towing. What appeared to be required was greatly increased stcering power, the tug being more or less independent from the tightness of the wirc-rope, and the maintenance of a nniform state of tightness in the rope, which on the one side would entirely avoid blaks in slack rope, whilst on the other it would not unduly interfere with the movement of the vessel in curves.

The princıpl. embodied in Messrs. Greig and Eyth's patent offers the most simple solution of this problem. The rope, after passing the clip-drum, instead of sinking back into the water, is led over one or more " moving sheaves" of an apparatus which, altogether, is called the "slack g:ar." The motion of this moving sheave away or towar.ls the clip-dram alogg a pair of horizontal rails of sufficient length causes a greater or smaller amount of wire rope to be stretched between clip-drum and sliding pulley, and this rope is constantly kept at a certain uniform tightness by the pressure of the piston of a steam cylinder being brought to bear on the moving sheave. 'Ihus it becomes evident that instead of any slack rope leaving the tug, it is retained on board stretched out between the clip-drum aud moving sheares, the rope, leaving the tug under all circumstances with a moderato and nniform strain on it, avoiding overy chance of kinking. On the other side, whenever the wire rope has a tendency to become too tight, the sliding pulleys recedo towards the clip-dram, paying out some of the stored up ropo, and restoring the orisinal moderate tension in the back rope. It is evident how far this arrangement influences the stcering and staying powers of the tug As long as the slack gear has any rope to epare the tag is not beld by the back rope, and can move laterally with perfect freedom. If, combined with this, the distance from the first to the last guide pulley is of moderate length, the tug will be with regard to its steering power almost independent of the rope. There being vo kinks possible and no loose ropes to contend with, the cable can now without danger be led over the centre of the vessel. The rope itself will be asped not only from kinking, but also from any undue stra. os which formerly wire put on it whilst steering round curves, and which frequently made the towing round sharg oends a_{i}, impossibility.

We now describe in detail the special canal tug illustrated on page 136 On most canals it is highly lesirable that the tug should be able to run back and forward along the rope without turning, and to reverse its course with as little tronble and loss of time as possible. This malses the general arrangement of tugs for canal navigation proper, somewhat more complicated than that of river tuge, the latter be ag required to run forward only when at work, and to turn round at the end of thur journey. Bow and stern of tho vessel are therefore of exactly the same shape, each end being provided with a long and powet ful rudder worked independently from tho deck near the centre of the boat by a separate rihcel. Thu front rudder is generally fixed in its central position, thus forming a prolon ation of the keel and increasing the staying power of the - Ssel to a very considerable degree. The middle portion of the boat is occupied by the enginc-room, and therefore provided with a deck of sufficient elevation. Towards both ends the deck is considerably lower, sloping down topards the rudder-posts, where it is only a few inchos abovo the wator line. This lower portion of the deck is made absolutely vater-tight, and the space bolow it is specially occupied by
portions of the slack gear. Above the rudders, for the sake of protecting them and of proventing the wire rope interfering with their movements, there is a sort of raft actually floating c. 2 the water, and thus in no way increasing the draught of tho vessel, but at the same time firmly bo'ted to its sides. These raftsincrease the steadiness of the boat, and protect it efficiently in case of collisions. In the centro of the ongino-room, placed crossways, is a tubular boilor carrying a double-cylinder engine of about 8 to 10 -horso power. The engine is fixed on the sido of the fire-box and boller barrol, so that tho crank shaft is in a rortical position, near tho smoke-box end. The smoke box is a accessiblo through a corresponding opening, protected by a water-tight cover in the side of the bost. The starting and reversing handle of the engine aro on deck, in easy reach of the helmsman, whilst the stoker fires the boiler from tho sido. The erank shaft at its upper end carries a small fly-wheel, at its lower and a pinion, working the clipdrum. which turas horizontally on a shaft underneath the bolter, and is otherwise is such a position that the centro line of the clips touches th centre lino of the boat. Below and above the clip-drum thon are-moosely turning on the same shaft-two ordioary rope sherves, which we shall call the top and the bottom cuntre shesve respectively.

On each sidu of the boiler is a "moving sheave," i.e., a ropupulley, turning horizontally on a vertical stud, sthich is bolted to a strong fat iron carried on rollers, and thus capable of moving along a rail from the clip-drum towards the rudderpost, through very nuar the whole length of the vessel Attached to each end of the wagon on which the sheave rests thers is a chain, which by suitablo pulleys is led along the rail, and then towards the chain drums, to which the ends are fixed.

Chain-drams and slack-gear cylinders are shown on an onlarged scale. The slack gear cylinder is simply a tubu, the ends being closed by two pistons. Butweon the pistons is an opening provided with a three-way cock, by which the interior of the cylinder can be p aced in direct communication with the boiler or with the atmonphere Whea tha slack gear is in action the boiler pressure is directly an 1 constantly acti is on the tivo pistons. I'here are toothed piston-ro is to these pistons, acting like a ray an 1 working a pi ion. Thu pinion is keyed to a short shaft wh ch also carrics a chain drum. Eich cbain drum acts on one of the moving shedves abive describ. ed, the tive chains comin a from opposito ends of th, wis son, being wound 0 : th , drum from opposite sides, 80 that the tura itg of the drum winils one chain on whilst unwindiog the other, and ther by moves the sheaves wagon bask or forward. The stcam press ire in the black gear cylin lur cons ancly pressing the two fi-tons nutwards, produces evidently a tendency to turn the drums, or, by uncaus of the chains, to push the shoaven frum the cli, drum away towards the bjat ends. The opposite motion would be accomplished uy pressiug the sheaves tovards the clip-Urum with a power sufficiently great to overcome thu ateam pressure in the cylinder and to push the pistons back into it. A catch and a ratchet-the latter being cast to the rop flange of esch chain drum-are used for stoppiug the motion of the drums, whenever it is desirable to stop the action of the slick gear and work with a fixed or rigid system of pulleys. The two catches are connected by a link, and the handie by which they are thrown in or ont of gear, as well as the bandle by which steam is admitted to the slack gear, are both in reash of the helmsman. We have finally to mention a pair of vertical guide pulleys, leading the rope i i, to tho clip-drum, and two swinging pulleys the latter being the first and the last palley over which the rope runs in its passage thtough the boat. They are suspended by a univeroil juint, which permits them to assume any angle indicated by the direction of the rope, and their position near the centre of the boat, and very little above tho water-line, offers great ad vantages as to the handling and steering of the boat in curves. Tho rope is prevented from surging over the slanting decke by the straio which is constantly pat on it, in front by the actual work performed, bohind by the action of the slack gear

Following now tho rope in its passages over the tug, we see it passing over the first swinging pulley, down towards and slightly round the vertical gaide pulley, half round the clip drum, towards and half ronnd the moving sheave A-back again, passing underneath the boilor towards and half runnd the mofing sheave B; once more back and half round the top centro sheave, and from thence underneath the second galde pulley over the sacond swinging pulley back into the watos.

