NATURAL HISTORY.

the cambl.

The camel is a very large animal, and can carry very large burdens on his back, sometimes as much as a thousand or twelve hundeed pounds. The people who livein the very hot countries, and are obliged to take long -journeys over the burning and barren sandy deeserts, would not know what to do withlout the camel. The camel moves slowly, but he can travel a very great distance with but litile food or water; and this is of particular consequence in the journeys through the deserts, where there is very little food to be.had, and where water is very scarce.Proridence has formed the camel in a mannerexexactly suited to the work which it has to perform. It has a tough sppongy sort of foot.rhich is never found to crack, and this is of yast importance in hot climates and dong.journeys : and it has, besides, a stomach so formed that it can contain a great quantity of water in reserve, by which it is :enabled to moisten its food; if it had not this, it would perish, in a hot country where itcould find no water to. uring The camel Frof smild and gentle dispocitton, and easily taught to do such services as are required of him.
I It is a delightful study to think of the sperfect and excellent marner in which the Almighty has formed every creature, according to its necessities and the place wherc it is to live. The contrivance of something within, which can retain a supply of water, would be of no use in a country like ours Where water is every where to be had; but it is of very great use indeed in a burniug climate where water is so very difficult to be found. This shews the great power and goodness of the all-wise Creator of all things. And every animal that exists would prove the same thing if we exauined it carefully; and this thought ought to raise our minds to derout admiration of all the works of cur great Creator, and of pious gratitude for all his mercies.

COMMON THINGS.

No. 7.-metals.

Upon what can we fix our eye, which does not contain a metal, or bear its mark ? Even the precious metals, how common? though perhaps not quite so abundant in the hands of every one, as he would like. Over how many thousand feet of the surface of commun things is gold spread?
The tin mines of Comwall have made themselves known by their inexhaustible treasures, all over the world. And what is
there that does not contain iron ? The rocks nese. is's almost always found in the state of are coloured by it. Plants and animals an oxid, and it is difficult to reduce it to a contain it. It even constitutes a part of our metalic state. Iron oxidizes in the common blood, zud of course circulates in all our atmosphere, more rapidly if moistened with veins-What instrument or article is there water, and still more so, if moistened with in civilized society, which does not bear the mark of iron ?

Besides gold, silver, tin, and iron, we have copper, lead, zinc, antimony, vizimuth, cohalt, platina, manganese, arsenic : all useful in the arts and comforts of civilization, and many other bodies whicls are called metals.
And what are metals? What distingu shes them from other bodies? One thing which distinguishes them from all other bod ies, is their iceiyht. The heaveist metal weigis 23 times as much as water; the lightest of the common metals weighs more than 6 times'as much as water.
The metalsalso possess greater strength than any other substance; and iron is the strongest of the metals, and on that ac sonat is in common use where great strength is required.
The metals are malleable; they can be beaten into leaves. Gold which can be beaten into teaves 290 thousmadth part of an inch in thickness, is most malleable; and silver, next. Copper, lead, tin, and iron, can also be beaten or rolled into leaves.
The metals are ductile ; they can be drawn into wire. A single grain of gold has been drawn into a wire $\overline{0} 00$ feet long. Iron and silver are exceedingly ductile. Copper, lead, and zinc, can also be drawn into wire.
Metals are fusille ; they can be melted by heat. Mercury is fusible at the common temperature, and at the coldest temperature of the atmosphere we experience in this country. Lead, gold, silver, and cupper, are melted without dificulty, iron with some difficulty, and platina with much.
The inetalsare soluble; many of the acids will dissolve some of them, and all cau be dissolved by some one or two acids mixed. When once dissolved, they can be changed into various forms diffused through a great space, and spread over a great suriace. A piece of copper, as large as a pin's head, dissolved in nitric sulphuric or acetic acid, may be so minutely divided, as to be diffused through a gallon of water, and by the aid of a little ammonia, give it a most beautiful and delicate blue. One ounce of gold, dissolved in nitro muriatic acid with the aid of nther, can be made to gild the whole surface of a wire which would reack round the earth.

The metals are oxidized. Some of them combine with oxigen readily; it is cren difficult to prevent this combination. Manga-
an abid. Lead aud copper oxidize to a very slighifextent in the atmosphere, and entirely by the aid of heat or some acid.

Thiere is a beautiful variety in the propertiessind consequently in the uses of the metals. The properties of iron, for example, admirably fit it for edje tools, besides many othed uses to which it is applied. It is hard, strofir, elastic, capable of being welded and icr of madgnatism.

When , be properties of this metal, which is peahaps the only one essential to the arts of cuivization, are known, a full explanationus given of the endless and innumerable uses made of it.
Tiee great malleability of gold, and its refisting oxigen under all ordinary circumstantet, are two properties wisely and beautifulif united in that precious metal, and in som measure make amends for the small qua tities in which it is found upon the earth, coístpared with lead, copper, and some other metals.

THE ARTS.

bread.

In a previous number it was remarked that the whole regetable kingdom was composed of three simple clementary substances, viz. oxygen, hydrogen, and carbon. Oi these three starch is composed. And starch constitutes a large part of most grains, and many roots. Into some of the grains, especially wheat, and in less quantities rye, another substance, entirely unlike starch enters. This is called gluten, which is also composed of oxygen, hydrogen and carbon.

The starch and gluten composing wheat can be easily separated either in the grain or liour. The starch is soluble in water and the gluten is not: consequently, if kernels of wheat be retained in the mouth for a short time, the starch will be dissolved and removed, leaving behind the gluten. Or, if a gill of wheat four be put into a cup, and exposed to repeated washings, pouring off the water after it is applied, it will gradually dissolve, and carry off the starch from the flour, leaving the gluten by itself. The gluten is unlike starch in being insoluble in water, but it is tenacious and elastic, resembling India rubber.
To the gluten we are entircly indebted for light bread. The flour of Indian corn, rice, potatoes, and many other vegetables, though

