Sea-Going Rafts on the Pacific Ocean
 By EDWARD K. BISHOP.

F some ship-buider of old, with the lines of his primitive vessel in mind, could survey the oceans now, he would doubtless be as much amazed at some of the strange craft putting to sea from the Columbia river as at the modern warships or ocean greyhounds. In truth, many builders well acquainted with the present systems of marine architecture and engineering would view for the first time such craft, while the layman might hesitate before deciding whether to pronounce them monsters of the deep or some freak in shipbuilding. They can hardly be classified as ships, even though designed to go to sea, or as barges, though great freight-carriers; they are, in short, huge talts of round timbers or lumber, bound b) cables, chains and bolts in a scientific and ingeniuus manner, the method of construction having been eldised after many experiments in this little-tried field.

For several seasons past rafts of logs have been towed to San Francisco, Cal., and the journey has been completed in safety a sufficient number of times to demonstrate that the method of transportation is practicable as well as profitable. This year rafts composed wholly of lumber, and of totally different construction, have made their appearance, and every one interested in lumber or the carrying trade on the Pacific coast is watching the experiments with great interest, as the establishment of this method of transportation would revolutionize the coastwise carrying-trade, and, by its great saving in cost, drive the cailing vessels and steam schooners out of husiness, or force a large reduction in charges.
looth log and lumber rafts are still looked upon as ohjects of curiocity on the Pacific coast, and more or less the projects of men who will take great risks. The former operates in a comparatively restricted field, and will probably never change evisting conditions to any great extent, as many think the lumber raft is destined to do ; but it has already stood the test of several
ton to San Francisco by means of rafts. The problem of incorporating material as unpromising as round \log s into a vessel sufficiently stanch to make an ocean trip of 650 miles is a peculiar one, and lew have seen the actual work of construction.
In contrast to ordinary boat-building, the cradle for this unique vessel is constructed on land and launched, leaving the work on the raft itself to take place in the water. The usual process of launching a completed vensel is replaced by drawing certain pins, causing the entire cradle to separate into two parts and allowing the raft to float freely in the river. At a short distance it then closely resembles one ot the modern whalebacks, without any upper works, though a little closer inspection reveals the corrugited surlace formed by the logs and the huge chains encompassing the whole. The timber composing it is of fir, and is chiefly for piling purposes and spars. No sticks shorter than 30 feet are used, and many measure 110 feet.
The cradle is composed of forty-three inverted bents, twelve feet apart, and the logs extend twelve feet over at each end, making the completed length $\mathbf{3} 2 S$ feet. The posts of the bents are 8×10 timbers; with caps, 10×20. The desired contour for the bottom of the raft is secured at each bent by 30° and 60° bearers, supplemented by gluts designed to produce a form as nearly circular as possible. The vari jus bents are joined together longitudinally by a series of 12×12 timbers, or waling -6 altogether, $\&$ being at the bottom and t on each side. struction allows the final separation of the cradle into two parts, the line of cleavage corresponding closely to that of the keel of a boat. possible by the manner of joining the posts at each to the 10×20, mentioned above, which extends the entire width at the point considered, while the other is fastened at right angles to an $S \times 10$ and a 3×10, strapped together, with sufcient space left to allow the $\delta \times 20$ to slide between, and long enough to reach half the distance between the posts. Thus it will be seen that the two sides of the cradle are entirely distinct,
seasons, and the methods of its construction will be ireated first.

Ten years ago considerable attention was directed to the first ratt of logs ever built for an ocean trif. It was towed from the Bay of Fundy to New lork city. Since then a number have entered that harbor, but at the present time the centre of activi's in this line is on the Pacific coast of North America, where a company has been incorporated for the e.ipress purpose of trancporting the timber of Oregon and Washing-
by sliding one timber into the channel formed by the other two, and can be made into a rigid whole only by fastening the sliding member so that no motion is possible. This is done by pinning the three pieces together by a two-inch iron rod, so arranged that, when the raft is completed, power can be applied to withdraw each pin. Upon such withdrawal the cradle slides apart, releasing its burden.

When the cradle has been built and launched, it is towed to the desired location, which in the

Columbia has been in fifty feet of water near mouth of a slough, and is fastened in its place a row of piling on one side, each pile passig through a tie box, connected with a bent, whit allows the cradle to rise and fall with the tite and also to sink deeper as the load increase When completed, the raft draws about trete feet of water.

In order to bind the raft together, the conslit. ent piling must be very carefully selected. is swell butts or crooked sticks are aceepted. Th minimum length of a pile is thirty feet, and the butt must not be less than twelve inches or cm than 15 inches in diameter. Even with sad timber, it is a source of wonder that a rafter be built to stand the ordinary swell of the ocear not to mention the heavy seas frequently e countered, until it is noted with what care ead piece is fitted into place, and the whole chaipo so that the pull on the towline actualiy binds a

A Crimif in Process of Constrlction, Before Lalencuing.

As already stated, the conThe division is rendered bent. One post is bolted the connection being made

A Raft Under Towage.
more firmly together. The logs are brougt beside the cradle, where two large steam dernis. built on scows, are placed to hoist themwas position inside. The raft grows, piece by piece till the cradle is completely filled, when it is rest for the chain work which is to bind the whole in gether.

In form the raft closely resembles a cigar mo each end cut off. It is designed that a setion taken at any point should be a circle, but a practice most of the upper face is somewhat f iz: tened. Each end is a perfect circle, twelve fetio diameter, and the size gradually increases tull width is fifty feet. After the raft leaves to cradle, its shape is maintained by chams, made a $1!=$-inch iron, encircling the raft at intervals a twelve feet, and by wire cables running tos lougitudinally and transversely. The terminates at each end is a stout bulkhead of four-mit plank, spiked to the ends of the logs. Outsat of the plank are two upright round timbers, aw the double cable, extending the entire length α the raft, joins the corresponding timbers togethe. The transverse cables connect the enciray chains a little below the water line, thus preves: ing the raft from spreading.
The method of connecting the towline to tiz raft is ingenious and effective. Through tis exact centre extends a heavy chain of $13 \% \mathrm{inct}$ iron, with a series of smaller chains attached at regular intervals and connected by shackies to those encompassing the raft. Near the midfl? these chains extend at right angles to the cent: line, alternately on one side and the other, exct f i in the case of the last five at each end, wheretw circumference of the raft is rapidly diminishiag, these being arranged in even pairs and slantios sharply toward the bulkheads at the ends, in 2 resular herring-bone plan, before joining ti outside bands. Thus, when a pull is exerted os the towline, it is transmitted to every chain to circling the raft, and the heaviest strain will cors on the rear end, which can better stand it. Tut logs cannot escape, as they are bound by th circles of chain and the increasing diameter of the raft exactly as are the staves of a barrel when 2 a

