Combat characteristics of the shell

The shell is designed to disable personnel through the respiratory organs.

CW agent in shell - sarin. Combat condition of CW agent when used - vapour and finely dispersed aerosol. Method of CW agent dispersion - explosion of bursting charge. A percussion fuse is used in the shell.

Shell weight - 33.4 kg. Weight of sarin - 1.6 kg.

Filling coefficient - 0.05.

Explosive - TNT.

Steel, copper and aluminium are used in shell construction.

122-mm chemical tube artillery shell

The shell consists of a casing with a filler hole, a burster tube, a bursting charge, a fuse and a CW agent (figure 5).

Combat characteristics of the shell

The shell is designed to disable personnel through the respiratory organs and unprotected parts of the skin, and to contaminate <u>matériel</u>, terrain and engineering structures.

The CW agent in the shell is viscous lewisite. Combat condition of CW agent when used - vapour, aerosol and droplets. Method of CW agent dispersion - explosion of bursting charge. A time fuse is used in the shell.

Shell weight - 23.1 kg. Weight of viscous lewisite - 3.3 kg.

Filling coefficient - 0.14.

Explosive - TNT

Steel, copper and aluminium are used in shell construction.

152-mm chemical tube artillery shell

The shell consists of a casing with a filler hole, a burster tube, a bursting charge, a fuse and a CW agent (figure 6).

Combat characteristics of the shell

The shell is designed to disable personnel through the respiratory organs and unprotected parts of the skin, and to contaminate <u>materiél</u>, terrain and engineering structures.

The CW agent in the shell is viscous lewisite. Combat condition of CW agent when used - vapour, aerosol and droplets. Method of CW agent dispersion - explosion of bursting charge. A time fuse is used in the shell.