Verification.

с.

Verification.

	A = B =		
	C =		
$A + B + C = 180^{\circ}$			

39

Case III.

Case III	a, b, C given
Given $a = 209.88, b = 333.33, C = 122° 26'.$	**
Here, ' being greater than a , we must interchange a , A , with b ,	

B in the formulas of solution.

90° 00 $C = 122^{\circ} \ 26'; \ \frac{1}{2} \ C = 61 \ 13$ $\frac{1}{2}(B + A) = 90^{\circ} - \frac{1}{2}C = \frac{1}{28^{\circ}}\frac{1}{47'}$ $L \tan \frac{1}{2}(B-A) = \log (b-a) + \cos (b+a) + L \cot \frac{1}{2}C - 10.$ A and B. a = 209.88; log, 2.32197 b - a = 123.45; log, 2.09149 b + a = 543.21; log, 2.73497; colog, 7.26503 $\log (b - a), 2.09149$ colog (b + a), 7.26503 $\frac{1}{2} C = 61^{\circ} 13'; L \cot \frac{1}{2} C, 9.73987$ $\frac{1}{2}(B-A) = 7^{\circ} \ 07'; \ L \tan \frac{1}{2}(B-A), 9.09639$ $\frac{1}{2}(B+A) = 28$ 47 $B = 35^{\circ} 54'$ (B and A found.) $A = 21^{\circ} 40'$ $\log c = \log a + L \sin C + L \operatorname{cosec} A - 20.$ • $\log a$, 2.32197 $C = 122^{\circ} 26'; L \sin C, 9.92635$ $A = 1^{\circ} 40'; L \operatorname{cosec} A, 10.43273$ log c, 2.68105 c = 479.79;(c found.)

found.)

23350 503

303

-colog s}

colog s}.

3 found.)

 $-\operatorname{colog} s \}.$

C found)