TABLE II.

THREE-COIL GALVANOMETER.

Table giving the ratio of the currents producing the deflections δ and δ , the 1000-ohm coil being in circuit.

ð-ð'	Value of a†			Value of at	
	when $\partial > \partial'$	when $\partial < \delta'$	$\partial - \partial'$	when $\delta > \delta'$	when $\delta < \delta'$
2	1.04 1.08 1.12 1.16 1.20 1.25 1.30 1.35 1.40	0.92 0.89 0.86 0.83 0.80 0.77 0.74	12 13 14 15 16 17 18	1.49 1.54 1.61 1.67 1.74 1.82 1.90 1.96 2.04	0.64 0.62 0.60 0.55 0.53 0.51

Examples.—Let $\delta = 61^{\circ}$. $\delta' = 49^{\circ}$; then a = 1.54. Let $\delta = 49^{\circ}$, $\delta' = 61^{\circ}$; then a = 0.64.

RESISTANCE.

Variation in resistance due to alteration in temperature.

The following formula is given by Dr. Mathiessen, in which r_t is the resistance of the metal, or alloy, at the temperature t° C and r° its resistance at o° C.

$$r_t = r_o \left(\mathbf{1} + a \ t \pm b \ t^2 \right)$$

The following are the values of a and b:

a	b
Most pure metals0.003824	+0.00000126
Mercury	-0.000000398
German silver0.0004433	+0.000000152
Platinum silvero.ooo31	
Gold-silver	-0.000000062

*This Table gives the mean of a series of experiments, made by the author.

 $+a = \frac{C}{CC}$, and δ is the deflection due to the current C.

under the

ometer is otherwise.

he needle

o apply a These ection of equili-, or $Fl \theta$, Hence

is