and other cxpensive attendmuts of the preparation of aluminium, linve dwarfed the developunent of this, which promised to be no mimportime brimch of metallurey, the uniune properties of the metal fitting' it for mamerons :md widespread applications in the arts. Io mow fimis it chicf employment not in its demental combition, but :illoyei, with other metals, many of such :illoys heing clleaply 'pupured without the preliminary isolation of the ulhoying metals.

ongario coleseat of pharmacy

Pabsment, - - Wal elliot, Ese.
The regular mectings of the College tale phace (n the Finss Funay crenimy of cetcl munth, "t the Melianies' $r_{\text {testitute, when, wfter the }}$ truastection of hnsiness, there is a paiper rectl, or disisension enguyed iia, zupur sthjects of interest cuil rulue to the nembers.
The Cullige calmits us memincres, Chemistsand \mid prugyistsof ghomen standiuy, wuil heir asssuttents
 the folloriny fres:
Priacipals, • - - - $\$ 400$ per Aunum
Assistants \& Apprentices, 200
The Joursan. is furnished yren: to all members.
Partirs arishiny to join the Colleye may s.rud their nemer for proptosel to any of the members uf the Cilleye. A culy uf tice ionstitution anal Burlews of the complege weill le furpiovicel om application.

HENRY J. ROSE, S'reretury.

THE CANADIAN

E. B. SUUTTLEWOHTH, EDITUR.

TORONTO, ONT., AGUCST, $18 \% 0$.

Corresponilesace and gemem communica. tione, of a chasacter suited to che oljucts of this Jotexa, we invited, and will always he wel-
 coimmuncation, Int not necerssurily for publication.
Subscrinfionesi wiil not he arknoubeded ly loter, as mat senting the paper many be taken as sallicient ewiel ace of the wecipt of the maney:
 to he aldresent, post-paid.
 Tos:oszo:"

THE MANUFACTURE OF SALT IIN CAHIADA.

We need offer no remarks on the alvantayes to be derived froa the pussession of salt dejesits of such a valunble description as have been recently shown to exist in the Whorth-western section of this $P_{\text {rovince. Al- }}$ though but four yens hate elapsed since the fisst experiment was made, at Goderich, the work his been pushed furward with energy, and, at the present time, not oilly is the sumply of aalt fully cqual to hane demand, bata considerable smplts is amailable for
exportation. The attention of manufacturers should now be directed to improvements in the mumer of working, by which tho cost can be reduced, so as to allow a wider margin for profit in competing with the salt producens of the Thited States.
The Report of Dr. T. S. Hunt, on tho Goderich Salt Region, recently issued by the Geological Survey, is replete with information of the grentest vilue to manuficturcers, and contains much which is interesting to the general reader. The extent and locality of the deposits; analyses of the brimes, and courprison of their strength with those of the United States, as well as full details of the methods of concentration employed here, as well as in other places, are fully entered into, and described in detain.
Wo larn that the first boring was made near Goderich, in 1866, when, after a depth of one thousand feet had been reached, a bed of rock salt, estimated as laving a thickness of :bout forty fect, was reached. From this well a constant supply of brine has been obtained, up to the present time. Several other wells were opened, successfully, near the same locality ; and, a year later, the salt bearing stratum was reached, at Clinton, thirtcen miles to the south-east of the former locality. We may mention, in passing, that to-day-Aug. lst-we noticed a telegram in the daily papers, announcing that the Clinton Salt Company had just been rewarded by finding a deposit, at the depth of 1,130 feet from the surfico. In 1868 a boring was made at Kincardine, thirty miles north-enst of Goderich, showing the existence of the saltbearing stratum at a deptla of 900 fect. Dr. Hunt thimls it probable that the whole region betwecn Clinton and Kincardino will be found underlaid by salt, and mas belong to a single basin, whose extent yet remains to be ascertained.
Wells have leen sunk in various other lecalities, as at Tilsonburg, London, Southampton, Port Elgin, and Waterloo; most of theso have been abandoned, as unsuccesstul, althongh the proprietors of the well at Tilsonburg report the finding of brine marking from 35° to 50° of the salometer, which would seem to indicate the prosimity of a saliferous statum.

The great purity of the brines met with at Goderich has beenimade the sulject of remaxk by Prof. Goossman,-former chemist to the Onominga Salt Comyny -who, in 1808, drav up a repart on the subject. Ho says "the present brine of Goderich is zoot only one of the most concentisted known. but also one of the purest, if not the purest, at present turned to practical wse for the manufacture of salt." Allusion is made to the very small proportion of the obnoxious deliquegcent chlorids of calcium mad magnesium,
which nre ouly presont in one fourth to ono fifth of the quantity existing in tho brines of Syracuse, N. Y. Tho brines of Snginaw, Hichignan, are still more impure, containing, as shown by varions amalyges, from sixty tol ninety times the amount of earthy chlorides found in the Goderich brines.
'The Guderich Compmy's well has been worked continuously since October, 1866, and has yielded, for the greater part of tho time, one hundred bushols of salt, daily. It appears, however, that this hrge conssumption of brint has not been followed by a very marlied diminution in its strength; for from four malyses, mado at intervals of about a a year, we find tho specific gravity had only decreased from 1.205 to 1187 ; corresponding, respectively, to 25.70 to $23 \cdot 64$, per cent. of salt. The last analysis made by Prof. Hunt gave the following as the composition of the solid constituents :

Chloride of sodin	0
of calcimm.	0
of magnesium......	410
Sulphate of lime	$4 \cdot 856$
	241.868
eci	

A brino of this streugth yields about n bushel of salt for every 24 gallons; while 40 gallons of Symanse brine, which contains about 15 per cent. of salt, are required to make a like quantity.
The evaporation of the brincs, at Goderich, is carried on in large cast iron kettles, of a capacity of from 120 tu 140 gallons. Theso pans are arranged in two parallel rows of from twenty-six to thirty oach, over a furnace, the larger ones being placed in front. so that they inay receive the greater heat. The cost of a block of sixty kettles is about $\$ 1,500$, to which may be added a similar amount for the construction of tho furnaces.
The fuel hitherto employed has been chiefly wood, which is cut in the vicinity, and costs about $\$ 2.50$ per cord. From data fumished to Prof. Hunt, by several manufacturers, the nmount of salt obtained by the consumption of one cord of hard wood, is about 35 bushels, of 56 pounds each. It has been found that a cord of wood gives nearly the same results as a ton of ordinary cualono pound of coal producing a pound of salt; so that, in Goderich, the choice of fuel is easily settled, as the cost of coal is considerably higher than that of wood.
Although the Goderich brines are fifty per cont. richer than those of Syracnse, and consequently should require less evaporation, yet it has been found that while adopting.the same system, the yield of salt for a given quantity of fuel, is, in tho latter place, niuch larger. It appears that the eraporation is too rapid for the strength of tho brine, and on this joint Dr. Goessmann remarks that

