PILES FOR FOUNDATIONS.

Sand, if coarse in quality, dry, and sharp or angular in the form of its par. tucles, is frequently found to afford a tolerably good base for foundations; not so good as gravel of variable structure, it must be admitted, yet sufficiently firm, if well supported by the surrounding material, to receive ordinary foundations. It will, however, be improved by a little lime fronting, and will require all possible precaution in preserving it from the insidious action of water percolating through it from springs or upper drainage. When, however, sand occurs in a shifting co:dition, constantly sliding avay from tise inclination of its bed, or from want of cohesion, or when it assumes the form of a quicksand falling in through wide fissures, and drifting into heaps, filling up holes in the subsoil, and undermining the surrounding materials by gradual insinuation among them, complete preparations become requisite, in order to prepare for the building of the foundations. In these cases the access of water and drifting sand must be intercepted, which may be effected by the use of concrete, aided by dtaining off the water from the upper strata. Or a row of sheet piles may be driven about the intended site for foundations, the interstices caulked-that is, filled up witk oakum driven in with a tool -and the surface atterwards well coated wish putch. If the existing bed of sand be of small depth, it may be found worth while to remove it altogether over the surface required for the foundations, clear out the trench completely, level the surface of the sub-materials, if good, shore up the side of the trench with rough 3 in. planking, well pitcher, and fill in with concrete or rough masonry.
If, however, the sand be of great depth and extent, piling will become necessary. Piles thus employed to secure a firm sup. port for buildings effect this purpose in one of two ways, either by passing through the loose material, as sand, etc., and reaching a solid substratum of chalk, etc, into which they are driven so as to secure a firm footing or position, or by penetrating the loose material to such an extent that the friction between the sides of the piles and the surrounding materials suff. cient to preserve them in their places and prevent future subsidence. This latter condition is evidently compatible only with stationary sand. If they have any disposition to shift, it becomes indispensable that the piling reach an independent footing in the firm material beneath, and thus afford a foundation free from the action of the sand through which it passes. Even with such piling as this it may be advisable to protect it with a row of sheet piling drven on that side from which the sand has a tendency to move, so as to protect the work from lateral pressure hereafter. The piles should be of Memel or Dantzic whole timber, from ten to fifteen square inches, care being taken that they are nice, straight-grown sticks, free from shakes, and in all respects sound and perfect. They must be properly shod with iron and pointed, and the top squared and properly fitted with wrought-iron rings
or collars to prevent splitting from driving. Their length will, of course, depend on the depth of the soll through which they are to be driven, or its tenacity. The monkey of the pile engne is usually from 8 cwt . to 15 cwt . in werght, and each pile should be driven until ten blows of this monkey will not force the pile down more than $1 / 4$ in. When all are thus driven to the proper depth, the tops of the piles are to be carefully squared to a uniform level throughout, and the upper timber work fitted. Longitudinal half timbers, 5 in . to 7 in . wide, and soin. to 14 in . deep, are first bolted to the piles, notched down upon the shoulders cut for them. These constitute the walings, and serve to bind the whole pile framing logether. If the piles be sufficiently near to each othersay, not more than 2 ft . from centre to centre-the longitudinal planking, which is rough, and 3 in . or 4 in. in thickness, may be spiked at once down on the surface formed by the piles and waling. If the piles are further, it will be necessary to aix transverse timbers, say 6 in . by 6 in ., on the waling, in order to receive the planking which is to be spiked down upon then. The height to which the pile heads are first levelled will, of course, depend on the determination as to which of these methods is to be adopted.-Illustrated Carpenter and Builder.

POWERS OF A CORPORATION.

A case of much interest to municipal officers, as afecting the powers of a muncipality, came up before the Courts at Osgoode Hall, Toronto, recently. A motion for an injunction was made by Wm. Horton, a citizen of Windsor, Ont., to prevent the water commissioners of that city from syending $\$ 20,000$ in erecting water filters. By statute the city is permitted to spend $\$ 300,000$ on waterworks. Horton clams that the city will exceed this amount if permitted to spend money for filters, and he seeks by injunc. tion to prevent them doing so. The water commissioners cham that in addition to $\$ 30,000$ they are entitled to spend the water rates of the city. This is the question at issue. Chief Justice Armour ruled that Windsor should be a party to the action, and adjourned the case for two weeks to permit this being done, an interim injunction being granted in the meantine.

BONDING OF MASONRY.

The careful bonding of masonry is a very important matter, and should receive the close attention of the workman. A wall built of the roughest stones ought to be perfectly stable, though no mortar is used.
The principles of bond, by the stones overlapping and breaking joint thoughout the wall, are the same as in brickwork, and should be thoroughly understood by the mason, for upon their skilled applica. tion his reputation as a good waller depends.
Dry and porous stones should be well wetted before being laid in mortar, so as not to absorb the moisture required for the proper setting of the mortar. All joints in the wall should be filled up solid with mortar and spawls. The thickness of the bed-joints, depending on the smoothness of the beds, must be sufficient to prevent any unequal bearing resulting from actual contact between any irregularitics on them.
When a good appearance is aimed at, all stones exposed to view should be selected free from stains, chiefly caused by the presence of oxides of iron. In cabble or field stone building, bowlders are often chosen that are variegated in color, in order to give an asthetic effect to the work, but the proper disposition of these stones can only be directed by an artist, and this part should be considered if "cobble-work" is undertiekn with a view of being artistic.-National Builder.

Brickwork constructed in cold weather, using ordinary mortar prepared with warm water, proves very satisfactory in point of resisting power; nor is any 1 m provement effected by dissolving in water $1 / 2$ per cent. of calcium chloride. Ex. cellent results are obtained when the mortar is produced with warm water containing in solution 13 per cent of common salt. The addition of freshly slaked lime to ordinary mortar results in a satisfactory degree of durability; but still better results are obtained by the exclusive use of freshly slaked lime, especially when employed in conjunction with calcium chloride. An admixture of Portand cement with common mortar increases its resisting power to frost.-Thon Industrie Zeitung.

MICA BOILER AND STEAM PIPE GOVERINGS

The Highest Non-Conductor and the Cheapest Covering on the Market. rull Particulars from

Hoists of all Descriptions

4 Stone Breakers Derrick Fittings
Write for Prices and Catalogue.

