that diagonal of it which passes through the point will represent in magnitude and direction the Resultant of the Forces.

Also, if any number of Force, act at a point, the necessary and sufficient conditions of equilibrium are that the algebraic sums of the Forces resolved along three mutually perpendicular directions shall separately vanish.

The following propositions are historically interesting, though included in what has preceded.

27. Triangle of Forces.

ner, let

ctions.

X, Y

there-

ection.

Forces

since

by the

of the

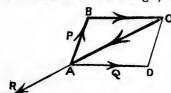
have

neces

rpen-

" The

acting


e lines if the

leted,

Triangle of

If the directions of three forces acting at a point, be parallel Stevinus. to the sides of a triangle taken in order, and their magnitudes be proportional to these sides, they will keep the point at rest.

For if ABC be the triangle, and A the point at which the

forces act; then, completing the parallelogram ABCD, the two forces represented by AB, BC, will be represented by AB, BC, and their resultant

by AC, which is equal and opposite to CA, the third force.

28. Conversely. If three forces acting at a point and keeping it at rest, be represented in direction by the sides of a triangle taken in order, these sides will represent them also in magnitude.

29. Hence, all problems relative to three forces keeping a point at rest are reduced to the solution of a plane triangle. Thus, if P, Q, R, be the forces, and the angle between P and Q be represented by (P, Q); then the angles of the triangle in the above proposition are the supplements of the angles between the forces; and, since the sine of an angle is equal to that of its supplement, and the cosine of an angle is the cosine of the supplement with opposite sign, we have (Trig. §34, 40.

$$\frac{P}{\sin(Q,R)} = \frac{Q}{\sin(R,P)} = \frac{R}{\sin(P,Q)}$$

Lami's For-