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the terms, ¢1, ¢25...... , pnr, are ail the unequal cognate functions
of f (p), obtained by giving definite values to all the sards in f (p)
which are present in the coefficients of the powers of = in ¥, and
forming the cognate functions without reference to the surd character
of the surds thus rendered definite: F being understood to be gene-
rated directly by the multiplication together of the factors, Fy (=),
Fy («c), &c., and to have the coefficients of the various powers of =
arranged so as to satisfy the conditions of Def. 8.

TFor, all the terms in the series,
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are (by hypothesis) unequal. Suppose, if possible, that the terms,
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which are the roots of the equation, Fs (x) = 0, are not all unequal.
Then, T (), having equal factors, bas a measure, H, of less dimen-
sions, as respects «, than Fy (»), and yet involving, in the coefficients
of the powers of %, merely such surds as occur in F» (z). But the
surds in Fs () are identical with those in Fy (x). [For instance, let
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Fi(x) =(1+ /)%, and, Fs (x) =2(1 + /p)°, where = i3 a third
root of unity, distinct from unity. The presence of z in Fy () does
not affect the surds in the expression]. Therefore the expression
H, of less dimensions as respects * than Fy (%), involves in the co-
efficients of the powers of = merely such surds as appear in Fy (%) :
which, [since Fy (z) is the product of the terms,%—¢; ,. ...., z—%n ,
where ¢1, ¢2, - - - ¢n, are all the unequal cognate functions of /' (p)
obtained by assigning definite values to certain surdsin f(p)], is
(Cor. 4, Prop. VL) impossible. Therefore all the terms in (2) are
unequal. Next suppose, if possible, that some term in (2) is equal
toa term in (1). Then Ty (x) and Ty (%) have & common measure ;
and their H. €. M. involves only such surds as appear in Fy (x)
or Fy () ; that is, only such as appear in Iy («): which, as above,
is (Cor. 4, Prop. V1.) impossible, unless F (=) and Fs (=) are iden-
tical. Suppose then, if possible, that Fy (x)=Fy (x). The coeffici-
ents of like powers of 2 must be equal. Let the coefficient of a
certain powers of « in Fy (), arranged according to the powers of y;,
(we choose a coeflicient where y; oceurs in some of its powers), and
satisfying (as, by hypothesis, it does) the conditions of Def. 8, be,



