the terms, ϕ_1 , ϕ_2 ,....., ϕ_{nr} , are all the unequal cognate functions of f(p), obtained by giving definite values to all the sards in f(p) which are present in the coefficients of the powers of x in F, and forming the cognate functions without reference to the surd character of the surds thus rendered definite: F being understood to be generated directly by the multiplication together of the factors, $F_1(x)$, $F_2(x)$, &c., and to have the coefficients of the various powers of x arranged so as to satisfy the conditions of Def. 8.

For, all the terms in the series,

$$\phi_1, \phi_2, \ldots, \phi_n, \ldots$$
 (1)

are (by hypothesis) unequal. Suppose, if possible, that the terms,

$$\phi_{n+1}, \phi_{n+2}, \ldots, \phi_{2n}, \ldots$$
 (2)

which are the roots of the equation, $F_2(x) = 0$, are not all unequal. Then, $F_2(x)$, having equal factors, has a measure, H, of less dimensions, as respects x, than $F_2(x)$, and yet involving, in the coefficients of the powers of x, merely such surds as occur in $F_2(x)$. But the surds in $F_2(x)$ are identical with those in $F_1(x)$. [For instance, let

 $F_1(x) = (1 + \sqrt{p})^{\frac{1}{3}}$, and, $F_2(x) = z(1 + \sqrt{p})^{\frac{1}{3}}$, where z is a third root of unity, distinct from unity. The presence of z in $F_2(x)$ does not affect the surds in the expression]. Therefore the expression H, of less dimensions as respects x than F₁(x), involves in the coefficients of the powers of x merely such surds as appear in $F_1(x)$: which, I since $F_1(x)$ is the product of the terms, $x-\phi_1, \ldots, x-\phi_n$, where ϕ_1 , ϕ_2 ,..., ϕ_n , are all the unequal cognate functions of f(p)obtained by assigning definite values to certain surds in f(p), is (Cor. 4, Prop. VI.) impossible. Therefore all the terms in (2) are unequal. Next suppose, if possible, that some term in (2) is equal to a term in (1). Then $F_2(x)$ and $F_1(x)$ have a common measure; and their H. C. M. involves only such surds as appear in F₁ (x) or $F_2(x)$; that is, only such as appear in $F_1(x)$: which, as above, is (Cor. 4. Prop. VI.) impossible, unless F₁ (x) and F₂ (x) are iden-Suppose then, if possible, that $F_1(x) = F_2(x)$. The coefficients of like powers of x must be equal. Let the coefficient of a certain powers of x in F_1 (x), arranged according to the powers of y_1 , (we choose a coefficient where y_1 occurs in some of its powers), and satisfying (as, by hypothesis, it does) the conditions of Def. 8, be,