altogether although the valve was still apparently partly open. This may have been due to the type of valve employed which was simply a standard, 4-inch gate valve with a certain amount of play in the disk which would render the necessary fine adjustments impossible. It may also have been due to the fact that the head in the upright discharge pipe to the elbow was greater than the head corresponding to this small discharge and the pump discharge thus simply fell off, no water passing along the horizontal portion of the discharge pipe. The conditions changed so rapidly at the small discharges that no results could be obtained.

The curve of efficiency is of good form, giving, as was to be expected, maximum efficiency at normal discharge and being comparatively flat at this point so that for slight increase or decrease of discharge the change in efficiency is slight.

The efficiencies obtained are quite high for a pump of this size acting under so low a head, being slightly over 65 per cent.

Although customary in large multi-stage pumps to obtain efficiencies in the neighborhood of 80 per cent., efficiencies of 60 per cent. or over may be considered very good in pumps of this size. In small singlestage pumps the bearing and gland friction is relatively much larger than in larger multi-stage pumps, and uses a much larger part, comparatively, of the input power, reducing the mechanical, and, therefore, the net efficiency. Thus, if the shaft of a large pump is twice the diameter of that of a small pump, while the power is eight times as great, the friction loss is only increased to double that of the small pump. The power consumed in overcoming friction (running pump light) is in the pump, as in other

THERE is nearing completion at Wissota, Wisconsin, a new plant, two features of construction of which are unique and therefore of particular interest to engineers, especially those interested in hydraulics. These two features are the ten sluice tubes which discharge into the draft tubes and the design of the spillway gates.

The ten sluice tubes are carried directly through the dam, sloping slightly downward and discharging horizontally into the draft tubes. The four middle draft tubes consist of two sluice tubes each, whereas the two end draft tubes have only one tube each. The flow of water through the sluice tubes is controlled by means of gate valves, eight being motor-operated and the other two being hand-operated. These sluice tubes are five feet in diameter with a total capacity of 10,000 second-feet, increasing the capacity of the spillway, obviously, by that amount. This gain in spillway capacity, however, is chiefly an incidental result, the primary object of the tubes being to produce an "injector effect" in the draft tube and thereby to tend to increase the partial vacuum on the discharge side of the turbine. From tests which have been made on a smaller scale it is estimated that the efficiency of the turbine will be increased approximately four per cent. by this arrangement. At present, efforts are being made to secure a patent on this particular type of tube. It is understood, of course, that the sluice tube

70	Test	Speed	Head	Disch.	Power	Effy	No	Test		Head	Disch.	Fower	Et
	Speed	N	H	9	1	17.	-	2	3	4	5	6	7
1	2	3	4	5	6	1.	17.3	The states					
1	995	1000	15.40	0.722	1435	48.1	31	1295	1300	25.30	0.862	2585	52.
Z	995.	Elle Elle	Z1.10	0613	1388	581	32	1300	1201-2	34.84	0.756	2532	64.
3	995		24.30	0 517	1330	58.8	33	1300	A HATTAL	38.93	0.651	z483	63
4	1000	1	27.09	0.411	1248	55.6	34	1300	TOP PAR	43.09	0.544	2360	61.
5	1000	an are la	28.50	0.326	1057	54.8	35	1300	1 900	46.63	0.436	2178	58
6	1004	the state	28.00	0.252	958	45.9	36	1300	10000	47.04	0.355	2075	50.
-7	1004	The West	27.00	0.195	890	36.9	37	1300	1	45.34	0. 276	1802	43
8	1005	1. 1990	25.05	0.124	780	25.0	38	1300	1943	43.30	0.193	1553	33.
9	1.00	El Child	1.	1.1.1.1.1	1.1.1.1	C. C. S. C.	39	1300	13:35	41.20	0.120	1363	22.
10	12083	25 18 54	and the state	61.000	1 AND THE	12.2	40	1295		24.15	0.097	1353	10.
-		1	00 R.	PM.	-	20 miles	and a lot of	Und	1.	4001	P.M.	A REAL	and a
11	1093	1100		0.785	1775	50.9	41	1400	1400	29.46	0.892	3065	53
12	1105	1100	25.50	0.676	168Z	638	42	: 1410	15 ALCON	38.80		3005	64
13	1090	12.3.15	2845	0.596	1700	62.2	4	\$ 1410	10. Phi.	44.50	0.696	2965	65
14	1090	1 22 3	31.40	0.503	1617	61.5	4	1410	100 125	49.80	0.588	2820	64
15	1100	172.723	33.33	0.410	1458	584	4	5 1410	The she	53.10	0.494	2675	61.
16	1100	10000	34 40	0.333.	1330	53.7	4	1410	1. 1. 2. 2. 2.	55.00	0.411	2545	55
17	1100	107211	33.98	0.265	1175	47.8	4	1410	10000	53.70	0.334	2245	49
18	1105	a start	32.60	0.189	1034	37.7	4	3 1400	1 28	51.76	0. 260	1970	.42.
19	1109	35 3	30.80	0.128	903	27.2	4		10000	50.31	0.196	1797	35
20	1110	1002 3	17.70	0.106	899	13.0	5	0 1400	1000	46.97	0.136	1583	25
			2001		No. 12	-	A. T.	12.5		1500	P.P.M.	and the	-276
21	1190	1200	21.50	0.835	2168	51.4	5	1500	1500	33.59	0.923	3720	51.
22	1200	1200	29.51	0.735	2082	64.9	5			46.10	0.805	3735	62
23	1186	1000	33.20		2053	63.0	5		10-11	56.07			68
	1187	10000	37.10	0.517	1938	61.7	5.		5 2 Color	58.Z4	0.593	3315	65
R4	1190	1 The	39.10	0.419	1772	57.6	5		ARA PAL	61.25		3185	59
25	1195	1 1020-0	40.30		1622	52.6	5		The way	64.06		2835	59
26		1.22 N.V.	39.50		1449	44.8	5		a detter to	62.10	0 333	2605	49
27	1195	1 70 -1			1282	34.2	5		Carlos and	59.00		2335	121
28	1200	1999 2 -	37.03	0.190	1120	23.9	5		1000	56.14		2140	
29	1195		35.65	0.120	1085	7.5	6	Contraction of the second	1. 2020	50.77		1955	22
30	1195	Provide Co	10.00	U.UIL	1005	1.5	0	1000	Contract No.		and the second	The second second	1

Table No. 3.

machines, a certain fraction of the total input, and this fraction decreases as the pump increases in size, so that evidently higher mechanical efficiencies should be expected in pumps of large size than in small size ones. Such efficiencies as have been obtained from this pump are the result of very careful design and accurate workmanship, which in turbine pump work are absolute necessities when high efficiencies are sought. In addition, as previously mentioned, the impeller and guide-ring, guides, passages and surfaces were all finely finished and polished in this pump, the construction being so modified as to permit of this being done.

HYDRO-ELECTRIC PLANT OF UNUSUAL DESIGN.

will be used only when the river is supplying water in excess of that being used by the plant.

The spillway gates, thirteen in number, each sixty-four feet wide, are of the type known as the Stauwerke automatic gate. As mentioned, this design of gate has never before been used in America, but is said to be giving remarkably good service in Switzerland under conditions very similar to those prevailing at Wissota. The gate is mounted on a horizontal axis at right angles to the stream, and is so adjusted that a counterweight just balances the pressure of the water at normal level. Any slight rise of level thereby increases this pressure and tilts the gate, thus permitting a much greater quantity of water to pass through the spillway. These gates are expected to regulate the water level of the pond to within four inches of normal under all ordinary conditions, and never to allow it to rise more than six inches above normal even under the most extreme conditions. In addition to being automatic and providing close regulation, the Stauwerke gate possesses a third advantage in that it is curved downstream and hence presents a concave surface to the stream. This design prevents all clogging by drift or ice.

With these two distinctive ideas in dam construction being thus tried on a large scale, the results which the Wisconsin-Minnesota Company obtains at Wissota will no doubt be well worth the attention of all engineers interested in hydraulic power development. J

Va

Co

Co

Di

Ci

Di

Co