making impro ements to the building. - The building No. 31 King street west, is to be remodelled. It is rumored that it is the intention or the owners to turn it into an hotel- The City Engineer has been requestal by the Property Committee to prepare plans and speclications for the improvements to the Yonge street whati.A meeting of the Sheppard Coupany will be held in the company's offices on the asst inst., when the purchase of a stie and the erection of a sutable building thereon will be discussed. - A water main is to be hide on Blair avenue, cost $\$ 775$.The fittings are to be placed in the new Isolation Hospital at once. The cost will be in the neighborhood of $\$ 6,000$.-At the regular meeting of the Boast of Works on Monday last. the recommendation of the City Engineer for the extension of the Yonge street sewers was adopted, and the work orderal to be done at once. - At a meeting held $l_{\text {tat }}$ week of the diectors of the National Club, which has purchased the leasehold of the old Unit ed Empire Club's building on King street. it was decided to submit a suggestion to the members to expend the sum of $\$ 33.000$ in waking improvements and alterations to the huilding. Should the suggestion meet with appromal. Messrs. Strickland \& Symons, will in all probability be entrusted with the supervision of the work.Building permits have been grinted as follows J. M. Dickson, pr. b. f. divellings, 42 McGee st. . cost $\{2,2 \infty$: W. H., Cormack, is Russell st., det. 2 story and autic bk. and stone dwelling. e side Madison ave, n of Lowther ave., cost $\$ 7.000 \mathrm{~J}$. H• Farr \& Co., i story bk. factory w. side Moose st., cost \$1,200.

FIRES.

The Asission City hotel Mission City. B. C. was completely destroyed by fire on the roth inst. -Mr. F. G. AfeMullen's large steam saw mill at Rvan's Creck. N. S., four milies from Shubencatia, was burned to the ground on Friday oi last week. Loes. $\$ 3,000-G$. W. Ayer \& Co.'s shingle mill and a grist mill occupied by Manson \& Boright at Magog, Qae. were buraed on the 28th.inst. Ioss, 56,000 - The Roman Catholic Glebe House at Church Point, N. B. was burned last week. Loss, partially covered by insuranceJ. I. Lyon's store and dwelling at Tusket. N. S., uas wotally consumad by fire on the 8 th inst. Insurance, $\$ 3.800$.- The. Thomas MeDonald Manufacturing Company's works on Inspector st, Monireal, were damaged by fire recently to the extent of $\$ 40.000$. Loss, $\$ 27,000-\mathrm{J}$. G. Findlay's mill at Walmeeburg. Ont., was burned on the 6ith ins. Loss, s2,coo.-Buildings opned by Lett Bros., C. Bouthilette, and A. P. Fenguson. at datazaz. Onc. were destrojed by fire on Thursday of Ynst weck-The residence of Mr. Evars Ingram at. Otonabee. Ont., has been destroyed by fire.-Mr. Donald Browns dwelling at St. Liambert. Que., was burned to the ground on the 13th inst loss. 82,500 : insurance, si, 400 -J. S. Henderson's factory at Parrsboro. N. S. was burned on Sunday last.-Edmond Lislet. Que., was burned recently. Loss. 55.000.-A disatrous fire occurred at Resina, N. W. T., of the s4th inst. The following are the names of owners of the buildiugs destroyed: Moorat Bros.- John Dawson, Mr. Mctarthy.
Mr. Cuntis, Hugh Armour. George Wcbb, Mr.
Lunan and Charles Howson. Lunan and Charles Howson.

CONTRACTS AWARDED.

Toronto. Onr.-The Metallic Roofing Co. sire manufacturing 30,000 square fect of galvalt. jeed corrugatediron for covering the
of the new Union Station in this city.
NONTREAL, QUE - The municipility of St. Cunègonde have awarded the contract to Aiessrs. Cuncegonde have awarded bestien:\& Valiquette for constructing pavements next year on. St Antoine, Notre Dame, Duerncy. nexilicar and Levi sticets.
The Ronald Fire Appliance Works, have sold o the town of Regina. N. W. T.. the World's thit eninine znd 2 house heater for ibe sime. plete outfit for Edmonton, N. W. T., and have gine for Springfield, N.S.

Mr. Emile Dubé, of River du Loup, Que, has purchas sed the lumber business carried on by the Estate of the late Mr. FA:C. Dube He will continue alone in pusiness as lumber nerchant and conzractor.

TEST LOADS ON PILES.

A report has appeared giving details of tests which were applied a few months ago to piles by Mr. Weydert, the superin-
tendent of buildings, Chicago. The pub. tendent of buitaings, Chicago. The pub.
lic library was to be built on piles driven into the clay, and it was assumed that they would be able to carry a load of 30 tons on each. Mr. Weydert ordered that a platform 7 feet by 7 feet, consisting of 12 inches-by-12 inches yellow pinetimbers 12 inches-byis inches yellow pinetimbers
iesting on steel f.beam i6 inches deep lesting on steel f.beam 16 inches deep
should be placed on four piles, and on this platiorm pig-iron was piled to a height of 38 feet. This test was com. menced in the morning, January 6th, a week after the piles to be tested had been driven. The surveyors marked points on top of the piles and took levels on them after the pig-sron had been piled to a height of 4 feet, and the load was about 45,200 lbs. The piling up of the pig-iron continued-irregularly, owing-to the severe. weather, until January 10 , when it had attained a height of $21 \cdot$ feet, and a wéight of $224,500 \mathrm{lb}$. Levels were taken, but no settlement was discoverable. On January 16 at 2 P.M. all the pig iron had been piled on ; it had then reached the height of 38 feet and the load on the four piles was about $504,800 \mathrm{lb}$. or about $50{ }^{\circ} 7$ tons per pile. On January 18 levels were taken and no settlement was discovered. The levels were repeated on January 20th, after the above load had remained for three days; also on January 28, after the load had remained for eleven days, in both cases no settlement being observable. Further tests, not being deemed necessary, and the tests hindering the progress of the work, orders were given on January 29 to proceed with the removal of the pig-iron. The four piles, therefore, sustained a load of a little over 50 net tons each for practically a fortnight, without giving any indication of settle.ment.

The piles were driven by a stean-hammer of the Nasmyth type; weight 4,500 1b. : fall 43 inches, making 54 blows per minute. The last 20 feet were driven with a follower of oak. It was found that it required 48 to 64 blows to drive the last foot with the follower, and as the ratio of blows without follower to blows with follower is as one to two, it may be estimated that it would have required from twenty four to thirty-two blows of the hammer to drive the last foot directly without follower. In the same. soil it required about sixteen blows of a drop-hammer weighing $3,000 \mathrm{lb}$. and failing 30 feet to drive the last foot with a follower as above, and thirtvetwo to thirty-six blows of the same drop-hammer falling 15 feet with a follower.
The piles were driven $2 \ddagger$ feet between centres, nearly, threc in a row along the trench. This is decmed to be as close as they can be driven with ease. They were about 54 feet long, and-were driven about $52 \frac{1}{f}$ feet. They had an averape diameter of 13 inches, circumference of 41 inches,
and an area at tip of 80 square inches. If and an area at tip of so square inches. If
a pile similar to the test piles is left for 24 hours, it is found that it.requires 300 to 60 blows of the above described hammer to drive it the last foot, or a repetiion of 300 to 500 blows of $189,0 \infty$ inch pounds each. The heads of the piles, after being sixiwed off, were 27 feet below the street, and the tips about 80 feet below the same. They were driven about 27 feet in sofi plastic clay, 23 fect in tough, compact clay, and twofeet in bard pan. The bearing power of this hard pan may be estimated by Rankine's formulas at 170 lb . per square inch, and by empirical results at 250 lb . per square inch; in this casc it may be a farr assumption that it would carry 200 lb . per square inch. The extreme average frictional resistance per square inch of sides of piles like those described, as deduced from experiments made under-analogous conditions, may:be placed at. 15-lb-per square inch.
The average area of the tip. of the above:piles is 80 square inches. Therefore their extreme point of resistance. widl
be $10,00.1 \mathrm{l}$. The surface of theirsides is about $35, \infty 0$ square inches, so that
their total extreme frictional resistance will amount to $376,000 \mathrm{lb}$. As the point resistance in comparison to the latter is but small, it may be neplected, and the ultimate bearing capacity of a pile similar to the lest piles may be estimated at 375: 000 lb ., or about 180 tons. But inasmuch as the ultinate crushing, streng th of wet Norway pine may nut be over 1,600 lb. per square inch, or using a factor of satety of $3,533 \cdot 1 \mathrm{~b}$.-per square inch, -and whereas the minimum area of piles specified to be not less than 8 inches at the top and 16 not less than 8 inches at the top and i6
inches at the butt is about 113 square inches, each pile should not carry more than $60,000 \mathrm{lb}$., or 30 tons. This provides a factor of safety of 2 for the crushing resistance of the timber, and a factor of safety of 6 for the frictional resistance of the soil. If the timber.be loaded to onehalf of its ultimate strength, a load of half of its ultimate strength, a load of
$90,000 \mathrm{lb}$; or 45 net tons may be assigned to one pile. But in the library building the conservative load of 30 tons per pile was-adopted, which gives assurance that this building will not be likely to suffer from any want of strength in its founda. tions.

PILE DRIVING

A falling body cannot do more work when its progress is arrested than has been done on it in lifting it up to the height from which-it-has-fallen-7his-mis-r-fundamental and unalterable principle. Thus, for example, ter us suppose that the ram of a pilf driyer weighs one ;on, and that of a pilf driver weighs one ;on, and that it fallspur, feet on to the head of a pilt;
then the work in he ram cannot bee either more or less than that which is equivalent to four foot tons. Thus, the work in the ram at the moment it touched the head of the-pile would be sufficient to raise the ram up again to the point from which it fell; or to raise a weight of four tons to a fell; or to ralse a weight of four tons to a
height of one foot; or to raise one pound through a height of 8,960 fcet; or to raise 48 tons through a height of one inch. Now, it is clear that if the ram were employed to raiseonetor through-s-heightof four feet, it must exert a force ofione ton throügh the distance of four ifer, If it did not, it would not move one ton at all, for it would be overbalanced. It it were called upon to raise four tons through a height of one foot, then it must exert a push of four tons through a distance of one foot; if to lifta weight of 48 tons, then it must exert a push of 48 tons through a distance of one inch, and so on. Bearing distance of one inch, and so on. Bearing
this in mind, there will be no difficulty in understanding the following simple rule The force of a blow- 15 measured by divid. ing the whole distance passed through by the ram betore impact by the distance passed through after impact, and multiplying the weighi by the quotient. Thus, let ing the weight by the quotient. Thus, let
the ram weigh one ton, let the fall be fs the ram weigh one ton, let the fall be ts each blow, then the push or effort exerted by the ram on top of the pile will be.

48

$-=48$, and $48 \times I=48$ tons.

It must be understood that this is the mean or average force of the blow. Its initial effort may be much less, because at the instant of impact the ram is moving at its full velocity, while at the instant the pile ceases to descend it will have no motion at all, and consequently, will exert no push, except that due to its weight. Three factors are in all cases necessary, namely, the weight, the height of fall, and the distance through which the body receiving the blow moves. In practice it is by no means casy to asceriain the latter with precision; and the enery y in the falling body can. be expended in more ways than one. For example, when the head of the pile is struck, two effects take-place simultaneously, the ram is shortened and so is the pile. The elastic rebound of each immediately takes place, and 'the ram jumps up from the top of the pilc. Again, tho top of the pile becomes highly heated. The elasticity of the pile plays an important part in influencing the rate of is descent. A ram. weighing 100 pounds, falling a height of 50 feet, will have stored in it on impact 5,000 pounds, and
if the progtess of the pile were one inch, its driving force would be 6,000 pounds. A ram weighing 1,000 pounds and falling 5 feet, would also have 5,000 foot-pounds of work in it , and would exert at driving of work in j, and would exert a driving
force of 60,00 pounds over a space- of one inch; but it does not follow, that the former would be equally effective in driving the pile. On the contrary, the lighter ram striking the pile with a higher yelocity might be much the less efficient of the two because the force of the blow would nint be transmitted through the pile, but would be expended in compressing the top of.it.

When a pile is struck on tho top, what is known as a wave of compression passes through it; and this wave requires time for its passage. Such a wave is set up in all columns when stress is suddenly brought on one end. The effect of a heavy ram falling at short distance on a heavy ram falling a short distance on a
pile head resembles a push, in a sense, and gives time for the transmission of the effort throughout the whole pile, but when a light ram falls the effect may be confined to the top of the pile, which is shattered. The velocity with which a rum strikes a pile head is calculated by extracting the square root of the height of the.fall in feet and multiplying it by eight. Thus, let the ram fall four feet ; the velocity will be 16 feet per second. If the ram falls 50 feet it would strike the pile with a velocity of 56 feet per second. If the speed was greater than that at which the wave of transmission could pass through the pile, then little or no effect would be produced in the way of causing its descent; as nearly the whole of the work would be done in compressing the top of the pile, or in shatiering it, and the drivins effect would be nothing. The effect of the element of time is not sufficiently well understood. About the only thing fully understood or accepted is that a heavy ram falling from a modernte height is, other things being equal, much more efficient than a light ram filling from a great height.

MUNGIPAL DEPARTMENT.

LEGAL DECISIONS AFFECTING MUNICIPALITIES.

In the case of J. A. Cherrier vs. tite Township of Ascott, the plaintiff sued for $\$ 15: 000$ damages, on bebalf of the minor child of Joseph A. Perream and his wife, caused by drowning of the child's father and mother, while attempting to drive over that part of the traveiled road leading from Capleton to Lennoxville on the-26th-day of-fune-i802. -Fte-Goaticook river had overnowed the road, The municipality pleaded regligence on the part of Perreau, which Judge- Brooks admitted in so far as to give only $\$ 500$ to plaintiff.

A decision of much interest to municipalities was renderd recently by Mr, Justice Rose at Osgoode Hall in an action brought by the city of Toronto against Mr. Daniel Larsch forobstructing the highway. The obstruction complained of conșists in the entroachment upon the sidewilk by the old MacDonald estate on Queen street west, near Gladstone avenue. It was contended on behalf of he defendant that no action could be brought except by the zuthority of the Attomey-Gencral of Ontario, because all higherayswere vested in the crown. The court decided that the municipal corporation could proteci itself without the leave of any other party.

Sewers and water conduits are being built at Grand Rapids, Mich., under the direçion of City Engincer, N. A. Collar in rather in interesting manner, says the Engineering Record. The work lies along the bank of the (Grand River, and its object is in intercept a quantity of sevage now discharged above the inlake of the waterworks and convey it to a point farther. down the stream where it will be away from the point of water supply. In the rocky bed of the river a conduit of

