pounded not long since, viz.:—When an object is 60 inches in front of a 10 inch convex lens, how far behind the lens will be the inverted image of the object? Or, to express it differently, when a divergent pencil of light emanates from a point 60 inches from a 10 inch convex lens, at what distance behind the lens will the pencil be converged to a focus?

Now, we know that a lens of 60 inches focus, placed in the position of the 10 inch lens, would render the rays parallel that fall upon it from the object 60 inches distant. Were it possible, therefore, to divide the 10 inch lens into two lenses, one having a focus of 60 inches to render the rays parallel, the remaining portion would bring these parallel rays to a focus at its principle focus. Deducting then a from 1 will give the strength of the remaining portion of the lens $\frac{1}{10} - \frac{1}{60} = \frac{5}{60} = \frac{1}{12}$; the two parts then $\frac{1}{60}$ and $\frac{1}{12}$ are equal to the one ler; $\frac{1}{10}$. And, as the $\frac{1}{00}$ will render the rays parallel from the object 60 inches distant, and these parallel rays falling upon the other part 1, th., will be brought to a focus at the principle focus of this part, viz: at 12 inches from the lens. Let us illustrate this with another example. Suppose that an object is 30 inches in front of a convex lens of 10 inch focus, and we wish to know how far behind the lens will be the focus of a pencil of rays diverging from a point in the object. We will have $\frac{1}{15} - \frac{1}{30} = \frac{2}{30} = \frac{1}{15}$; this 1 represents the power of a 15 inch lens, which we know will bring the parallel rays to a focus at 15 inches behind the lens.

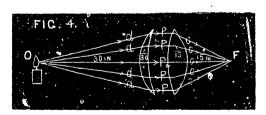


Fig. 4 illustrates this; O represents an object 30 inches from a ten inch convex lens, the lens supposed to be divided into two parts, one having a focus of 30 inches, and the other a focus of 15 inches. The 30 inch lens refracts the rays of the divergent pencil d, d, d, d, so as to render them parallel, as shown at P, P, P, P, P. These parallel rays, meeting the 15 inch lens, are again refracted and are converged to a focus at F, which is the principle focus of the lens, viz., at 15 inches.