Now the ratios of all these angles are of the same magnitude and can only differ in sign, there being a pair of angles which nave each ratio + and a pair-.
\therefore in determining from the cosine we get two values.
Next, let A be an angle whose sine is known, and describe $M A P$ the least angle which has the given sine.

Make MAP $P^{\prime \prime}$ equal to the supplement of MAP.

Then A must be either MAP or MAP', or some angle formed by adding (or taking) a multiple of four right angles to (or from) either of these.

Bisect these angles as before

Then $\frac{A}{2}$ must be an angle which has $M A$ and one of the four $Q A, R A, Q^{\prime} A, R^{\prime} A$ for its bounding lines.

Now those which have either $Q A$ or $R A$ as one of their boundaries have ratios equal in magnitude but opposite in sign. So also for those having $Q^{\prime} A$ or $R^{\prime} A$ as one of their boundaries; but the magnitudes of the ratios of the former sets differ from those of the latter.
\therefore the ratios of $\frac{A}{2}$ may be either of two sets of magnitudes nod of either sign, and therefore have four different values

