differential effects.

Proposition 4. An increase in α^2 causes a. a decrease in $g(c|c^*)$ if $\overline{p} < p|e$ b. an increase in $g(c|c^*)$ if $\overline{p} > p|e$.

Less confidence with the forecast based on purchasing power parity leads consumers to place greater weight on \overline{p} to calculate expected foreign price. If $\overline{p} < p/e$, then consumers anticipate that foreign prices will fall, leading consumers to increase purchases of foreign goods while domestic consumption falls. If $\overline{p} > p/e$, then consumers believe foreign prices will rise which favors domestic consumption rather than foreign consumption.

The results of propositions (1)-(4) are summarized in Figure 2, which illustrates how the consumer allocates income between goods purchased in the domestic market and abroad, for given values of p, y, and θ . The function $g(\cdot)$ is increasing which suggests that higher forecasted foreign price leads to greater domestic consumption. A change in uncertainty causes the curve to rotate around point A where $\overline{p}=p/e$. An increase in the value of θ (either due to a decrease in γ^2 or an increase in α^2) causes the curve to rotate clockwise as indicated by the dotted line. In this case, consumers rely more heavily on \overline{p} in forming expectations of foreign price. If $\overline{p}>p/e$ then consumers anticipate higher prices abroad and reduce foreign expenditures. But if $\overline{p}<p/e$, the change in uncertainty leads consumers to believe that foreign prices have fallen which favors increased travel spending. Only when $\overline{p}=p/e$ is the consumer's choice unaffected by uncertainty.