SOAP-JOBBLES,

and the fonces lahicir moun them: By C. F. Boys, A. R.S.A.. F.R.S. of the Royal olleye of Scicnce.

(Conlinnued.).

Let us therefore examine this case more in detail, I have adise of card which hats exactly the same dinmeter as the waist of the cast. I now holf this edgeways against the waist (Fig, 27), and though you can see that it does notitit the whole curve, it fits the part close to the waist perfectly. This then shows that this part of tho cast would appear curvel inwards if you looked at it sideways; to the same extent that it would appenr curved outwards if you could see it from above. So comsidering the waist only, it is curved both towards the inside and also awny from the inside the inside and also zway from the inside
accoiding to the way-you look at it, and to accoiding to the way-you look at it, and to
the same extent. The curvature inwards the same extent. The curvature inwards
would make the pressure inside less, and the curvature outwards would maike it more, and as they are equal they just balance, and there is no pressure at all. If we could in the same wiry eximine the bubble with the wais t, we should find that

FIV. 27.
this was true not only at the waist but at every part of it. Ing curved surface like this which at every point is equally curved opposite ways, is called a surface of no curvature, and so what seemed an absurdity is now explained. Now this surface, which is the only one of the kind symmetricul about an axid, except a flith surface, is called a catenoil, because it is like • a chain, as you will bee directly, and, the you know, catena is the Latin for a chain.

wir. 28.
shall now hang a daain in n loop from a level stick, and throw a strong light upon it, so that you call see it well (Fig 28). This is exactly thesme shape as the side of a bubble drawn out between two rings, and open it the end to the air.
Let us now take two lings, and having placed a bubble botween them, gradually alter the pressure. You cain tell what the pressure is by looking at the part of the film which covers oither ring, which I shati call the cap. Thismust be part of a splecre, and we know thit the curvature of this and the pressure inside rise and finl together. 1 have added now just the bubble
so that it is a neally perfect sphere. If 1 blow in more air the caps become more curved, showing an increased pressure, and the sides buige out oven more than those of a sphere (Fig 20)- I have now brought the whole bubblo back to the spherical form. A little increased pressure, as shown by the increased curvature of the cap, makes the sides bulge more; i little less pressure, as showil by the flattening of the caps, makes the sides bulge less. Now the sides are straight, and the cap, as we have already seen, forill s pait of a sphere of twice the diametar of the cylinder. I am twice the diametar of the cylinder. I am
sfill further reducing the pressure until sinl further reducing the pressure until
the oaps are plana, that is, not curved at all. There is nov 110 pressure inside, and all. There is now n10 pressure inside, and
therefore the siles have, as we have already seen, takun the form of a hanging chnin; and now, finally, the pressure inside; is less than the outside, as you can see by the caps being drawn inwards, and the sides have even a smaller waist than
the caterioid. We have now seen seven curves as we gr

1. Outside the sphere.
2. The sphere.
3. Between the sphere and the cylinder.
4. The cylinder.
5. Between the cylinder and the catenoid
6. The catencid.
7. Inside the catenoid.

Now I am not going to siy much more about all these curyes, but I must refer to

ra. 29.
the very curious properties that they possess. In the first place, they must all of them have the same curvature in every part as the portion of the sphere which forms the cap; in the second place, they must all be the curves of the least possible surface which can enclose the air and join the cings as well. And finally, since they pass insensibly from one to the other as the pressure gradually changes, though they are distinct curves there must be and intimate relation between them. This, though it is a little difficult, I shall explain. I shall show you a simple I shall explain. I shall show you a simple experiment which will throw some light
upon the subject, which you can try for upon the subject,
yourselves at home.
I have here a common bedroom candle stick with in fat round base. Hold the candlestick exactly upright near to a white wall, then you will see the shadow of the base on the wall below, and the outline of the shadow is a symmotrical curve, called is hyperbola: Gradually tilt the candle away from the wall, you will then nowa away less and less, and when you have so far titted the candle away from the wall that the flame is exactly above the edge of that the fame is exactiy above the enge of
the base, - and you will know whin this is the base,-ind you will know when this is
the cise, because the falling grease will the case, because the falling groase will
just fall on the edge of the candlestick and splash on to the carpet,--I have it so now - the sides of the shadow near the floon will be almost parallel (Fig 30), and the shape of the shadow will have become a curve, known as a parabola; and now when the cindlestick is still more tilted, so that the grease misses the base altogother and falls in a gentle stream upon the carpet, you will sce that the sides of the shadow have curled round ind met on the walls, and you now havea curve likean oval, except that the two ends are alike, and this is called an ellipse. If you go on tilting
the candlestick, then when the candle is the candlestick, then when the candle is
just level, and the grease pouring away, the shadow will be almost a circle; i would be an exact circle if the flame did not flare up. Now if you go on tilting the candle, until at last the candlestick is upside down, the curves already obtained

fia. 30.
will be reproduced in the reverse order, but above instead of below you.
You may well aok what all this has to do with a soap-bubble. You will see in a
baso of the candlestick throws the space behind it into darkness, and the form of this dirk space, which is every where round like the base, and gets larger as you get fuither from tho flamo, is a cone, Tike the wooden model on the table. The
shadow cist on the wall is of course the part of the wall which is within this cone It is the same shape that-you would find if you were to cut a cone through with a sav; and so these curves whicli I have shown Ii you are called conic sections. You can see some of them alivendy made in the wooden model on the table. If you look at the diagram on the wall (Fig. 31), you will see a complete cone at first upright (A), then being gradually tilted over into the positions that I have specified. The black line in the upper part of the diagran shows where the cone is cut through, and the shaded area below shows the true shape of these shadows, or pieces cut off, which are called sections. Now in each of these sections there are either one or two points, ench of which is called a focus, and these are indicated by conspicuous dots. In the
case of the circle (D Fig. 31), this pcint is also the centre. Now if this circle is made to roll like a wheel along the straight line

drawn just below it, a pencil at the centre will rule the straight line which is dotted in the lower mart of the figure ; but-if we were to mike wheels of the shapes of any of the other sections, a pencil at the focus would certainly not draw a straight line What shane it would drw is not at one evident. Furst consider any of the elliptic evident. Furst consider any of the elliptic
sections (B, E, or F) which you see on sections (B, \mathbb{E}, or IF which you see on
either side of the circle. If these either side of the circle. If these were
wheels, and were made to roll, the pencil Wheels, and were made to roll, the pencil as it moved along would also move up and down, and the line it would draw is shown
dotted as before in the lower part of the dotted as before in the lower part of the firgure. In the same way the other curves, if made to roll along a strilight line, would cause pencils at their focal points to draw the other dotted lines.

Weare now almost able to see what the conic section has to do with a soap-bubble. When a soup-bubble was blown between two rings, and the pressure inside was forms, some of which are represented of the dotted lines in the lower part of the figure, but in every case they could the gine, but in every case they could hav been accurately dran by a pencil at the oll on a straight line. I called one of the oll on a straight. line. I cinled one of the bubble forms, if you remember, by its name, catenoid; this is produced when
there is no pressure. The dotted curve in there is no pressure. The dotted curve in
show that this catenary cun be so dinwn, I shall roll upon a stringht edgo a bourd made into the form of the corresponding section, which is called a paritbola, and let the chalk at its focus dapw ts curve upon the black bond. Thero is the curve, and it is as I said, exactly the curve that a chain makes when hung by its wo ends. Now that a chain is so hung ou see that it exactly lies over the chalk line.
All this is rather difficult to understand, but, as these forms which a soap-bubble takes afford a beautiful example of the most important principile of continuity, I thought it would be a pity to pass it by. It may be put in this way. A series of bubbles maty bo blown between a pair of rings. If the pressures are different the cuives must be different. In blowing hem the pressures slowly and continuously change, and so the curves cannot be alto.. change, and so the curves cannot ether different in kind. Though they may be different curves, they also must pass slow: We find the bubble curves can be other: We find the bubble curves can be
drawn by rolling wheels made in the shape of the conic sections on a straight line, and so the conic sections, though distinct curves, must pass slowly and continuously one into the other. This we saw was the case, because as the candle was slowly tilted the curves did as a fact slowly and insensibly change from one to the other. There was only one parabola, and that was formed when the side of the cone was pirallel to the plane of section, that is when the falling greise just touched the edge of the candlestick; there is only one bubble with no pressure, the catenoid, and this is drawn by rolling the parabola. As the cone is gradually inclined mure, so tho sections become at first long ellipses, which gradually becomo more and more round until a circlo is reached, after which they become more and moro narrow until a fino is reached. The corresponding bubble curves are produced by a gradually increasunc pressure and as the diugran shows these bubble curves are first wavy (C), then they become straight when i cylinder is formed. (D), then they become wavy gain (E and F), and at last, when the cutting plane, $i_{\text {. }}$ c., the black line in the upperigure, passes through the vertex of the cone the waves become a series of semicurces, indicating the ordinary spherical sôap bubbile. Now if the cone is inclined ever so little more a new. shape of section is seen (a); and this being rolled, draws a curious curvewith a loop in it; but how this is so it would take too long to explam. It would also take too long to trace the further positions of the cone, and to trace the corresponding sections and bubble curves got by rolling them. Cireful inspection of the diagram may be sufficient to enable you to work out for yourselves what will happen in all cạses. I should explain that the bubble surfaces are obtained by spinning the dotted lines about the straight line in the lower part of Fig. 31 as an axis.
As you will soon find out if you try, you camot make. with a sonp-bubble a great ength of any of these curves at one time, but you miay get pieces of any of them with no more apparatus than a fow wire rings, pipe, and a little soap and water. You cim even see the whole of one of the loops of the dotted curve of the first figure (A), which is called a nodoid, not a complete ring, for that is unstable, but a part of such a ling. Take a piece of wire or a match, and fasten one end to a piece of lead, so that it will stand upright in a dish of soap water, and project half an inch or so. Hold with one hand a sheet of glass resting on the match in middle, and blow a bubble in the water against the match.' As soon as it touches the glass plate, which should be wetted with the soatp solution, it will become a cylinder, which will meet the lass plate in a true circle. Now very lowly incline the plate. The bubble will try to pull itself away from the match try to pull itself away from the mateh
stick; and in doing so it will develop a loop of the nodoid, which would be exactly true in form if the match or wire were slightly bent, so as to mect both the glass and the surface of the somp water at a right angle. Ihave described this in detail, because it is not generaly known that a completo loop of the nodoid can be made with a soapbubble.
(To be Continued.)

