altitudes will be carefully controlled by its terms. Also, the inspected party will probably receive copies of the data, and will know what evidence has been collected.

For the type of unilateral arms control which might follow an operation of forcible peace restoration, involving disorganized and noncooperative forces with a variety of weapons, some forbidden and some permitted, aerial reconnaissance could prove to be extremely important as a form of "coercive verification". Under these circumstances the monitoring states could probably mount any sensors they wished, but their aircraft might be subject to attack from the ground, especially if they flew at low altitude above sites occupied by armed and noncooperative "inspectees". Such parties would probably resist or prevent any attempt at effective on-site inspections. If it were too dangerous to conduct the aerial inspection at low altitude, much could be observed from higher altitude if there were no restrictions on the types of sensors. An example was provided by the use of American high-altitude U-2 reconnaissance aircraft in Iraq.

When hostile action is not foreseen, there could be value in the use of large helicopters for a combination of aerial and on-site inspection, including unplanned visits to sites at which overhead observation had given cause for suspicion.

There are ample opportunities for synergy within a multilateral aerial surveillance operation, by coordination of overflights and exchange of information. There will be an Open Skies Consultative Commission, pooling of quotas within groups of countries will be allowed,* and all parties are entitled to purchase all of the raw data collected. And, between aerial inspection and other means of verification, synergy is possible in the selection of targets for OSIs and overflights, and in the comparison of imagery obtained by different sensors.

Another opportunity for synergy will be presented if the areas inside of which verification measures such as OSIs are agreed differ from the areas over which aerial surveillance can be conducted. This is already the case between CFE, authorizing verification within a designated area, and not (yet) allowing aerial inspections, as compared to "Open Skies", which permits aerial inspection (but not verification) over a considerably larger area.

Monitoring the Testing of Weapon Systems

Testing of weapons, whether of types already deployed or those under development, offers important opportunities for determining their characteristics. In addition, when an arms control agreement specifies limits to the type of testing to be allowed, it will be necessary to verify that the parties are complying with these limits.

Some testing of nearly all major weapon systems must be conducted outdoors, without overhead cover, and usually on a known test range. It is often accompanied by radio frequency transmissions, including telemetry of instrument readings, radio teleprinters, and voice, which can be intercepted by receivers in space vehicles, aircraft, or suitably located ground stations or ships. In the cases of space and missile launchings a great deal of information can be learned from these communications regarding the characteristics of the vehicle being launched. For tests of surface-to surface missiles one key item is the number of independently targeted warheads, a factor not discernable by examination of the exterior of the missile.

While some arms control treaties permit research, development, and modernization, they may forbid the introduction of new types of weapon. The dividing line between a "modernized" and a "new" weapon is often difficult to define, and verification is likely to be dependent on observation of the testing of systems in the

For reception of overflights, Russia and Belarus have pooled their quotas of 42 and Belgium, Luxembourg and the Netherlands their 6.