SOIL SENSITIVITY

Klopatek, Harris & Olson (1980) Oak Ridge National Laboratory, Oak Ridge, TN.

Objective

- To identify areas: 1) susceptible to accelerated soil acidification,
 - 2) insensitive to acidification with lowered buffer capacity,
 - and 3) with intermediate response.

<u>Criteria</u>

Soil sensitivity:

- 1) pH
- 2) Total base contents (CEC X Base saturation)
- 3) Organic matter
- 4) Clay content

All parameters are averaged for A horizons (0-25cm) of typic soils on a county basis. H^+ ion concentration per m^2 calculated from average rainfall pH (Cogbill & Likens, 1974) for each county and multiplied by annual average precipitation (cm).

Sensitivity Class Definitions

Type	I	low CEC ∠ 12meq/100g	medium to high B.S. 30 to 50%	pH>5	Noncalcareous	sandy
Type	II	medium to high CEC >12meq/100g	medium B. S. 30 to 40%	pH>5	Noncalcareous	clayey or cultivate
Туре	III	medium to high CEC >12 meg/100g	1ow B.S. 4 30%	pH<5	Acid	- I
Type	IV	high CEC > 20 meq/100g	high B.S. > 50%	рН>6	Calcareous	- T

Map Product

Computer-generated maps produced defining each soil type (I to IV) for eastern North America on a county basis. Superimposed on this is the $\rm H^+$ ion concentration (5 intervals) ranging from < 0.02 to > 0.06 equivalents/m², $\rm H^+$ ion.

Interpretation

- Type I Accelerated acidification caused by increased (above normal) H⁺ ion input. Could require management practices (liming) if H⁺ ion input continues or increases.
- Type II These soils are already sufficiently buffered against a small (present)
 H+ ion input, such that large quantities of exchangeable cations are
 not leached.