AVERAGE ULTIMATE BREAKING UNIT STRESSES IN POUNDS PER SQUARE INCH. Recommended by the Committee on " Strength of Bridge and Trestle Timbers" AMFRICAN ASSOCIATION OF RAILWAY SUPERINTENDENTS BRIDGES AND BUILDINGS .-- 5TH ANNUAL CONVENTION, NEW ORLBANS, OCT., 1895. | | | ==== | | | | | | | | |--|--|--|--|---|---|--|--|---|----------------------------------| | KIND OF TIMBER. | TENSION. | | COMPRESSION. | | | TRANSVERSE
RUPTURE. | | SHEARING. | | | | With
Grain. | Across
Grain. | End J | Grain. Columns under 15 Diams. | | Extreme
Fibre
Stress. | Modulus
of
Elasticity. | With
Grain. | Across
Grain | | White Oak. White Pine Southern, Long Leaf or Georgia Yellow Pine Douglas, Oregon and Wash-\ Yellow Fir. ington Fir or Pine. \ Red Fir. Northern or Short Leaf Yellow Pine Red Pine Norway Pine. Canadian (Ottawa) White Pine Canadian (Ontario) Red Pine Spruce and Eastern Fir. Hemlock | 12,000
10,000
9,000
9,000
8,000
10,000
10,000
8,000 | 2,000
500
600
500
500
500 | 7,000
5,500
8,000
8,000
6,000
6,000 | 4,500
3,500
5,000
6,000
4,000
4,000
4,000
5,000
5,000 | 2,000
800
1,400
1,200
1,000
800
800 | 6,000
4,000
7,000
6,500
5,000
6,000
5,000
4,000 | 1,100,000
1,700,000
1,400,000
1,400,000
1,200,000
1,200,000
1,200,000
1,200,000 | 800
400
600
600
400
350
400 | 4,000
2 000
5,000
4,000 | | Cypress | 6,000
6,000
8,000 | | 6,000
6,000 | 4,000
4,000
4,000 | 600
700
700 | 3,500
5,000 | 900,000
900,000
700,000 | 350 | 2,500
1,500 | | Chestnut California Redwood California Spruce | 9,000
7,000 | | | 5,000
4,000
4,000 | 900
800 | 5,000
4,500
5,000 | 1,000,000
700,000
1,200,000 | 600
400 | 1,500 | ## AVERAGE SAFE ALLOWABLE WORKING UNIT STRESSES IN POUNDS PER SQUARE INCH. Recommended by the Committee on "Strength of Bridge and Trestle Timbers." AMERICAN ASSOCIATION OF RAILWAY SUPERINTENDENTS BRIDGES AND BUILDINGS.—5TH ANNUAL CONVENTION, NEW O., LEANS, OCT., 1895. | | | TENSION. | | COMPRESSION. | | | TRANSVERSE
RUPTURE. | | SHEARING. | | |--|-----------------------|------------------|----------------------------------|-------------------------------|---------------------------|---------------------------------------|---|--------------------------|-----------------------|--| | KIND OF TIMBER. | | Across
Grain. | With Grain. | | | Extreme | Modulus | | | | | | With
Grain. | | End
Bearing. | Columns
under 15
Diams. | | Fibre
Stress. | of
Elasticity. | With
Grain. | Across
Grain. | | | Factor of Safety. | Ten. | Ten. | Five. | Five. | Four. | Six. | Two. | Four. | Four. | | | White Oak. White Pine Southern Long-Leaf or Georgia Yellow Pine Douglas, Oregon and Wash-) Yellow Fir ington Fir or Pine Red Fir | 700
1,200
1,200 | 200
50
60 | 1,400
1,100
1,600
1,600 | 900
700
1,000
1,200 | \$00
200
350
300 | 1,000
700
1,200
1,100
800 | \$50,000
500,000
850,000
700,000 | 200
100
150
150 | 1,000
500
1,250 | | | Northern or Short-Leaf Yellow Pine | 900
900 | 50
50 | 1,200
1,200
1,200 | 800
800
800 | 250
200
200 | 1,000
800
700 | 600,000
600,000
600,000 | 100 | 1,000 | | | Canadian (Ottawa) White Pine | 800 | 50 | 1,200 | 1,000
1,000
Soo | 200 | 800
700 | 700,000
600,000 | 100
100 | 750 | | | Hemlock Cypress Cedar Chestout | 600
600
800 | | 1,200
1,200 | \$00
\$00
\$00
1,000 | 150
200
200
250 | 500
800
800 | 450,000
450,000
350,000
500,000 | 100 | 400
400 | | | California Redwood California Spruce | 700 | | | 800
800 | 200 | 750
800 | 350,000
600,000 | 100 | | | ## For THE CANADIAN ENGINEER ## CONCRETE CONSTRUCTION. BY MAJOR HENRY A. GRAY, M. INST. C.E., M. CAN. SOC. C.E., ENGINEER IN CHARGE PUBLIC WORKS OF CANADA, DISTRICT OF WESTERN ONTARIO. During my visit to the old country this last summer I visited several works and places where concrete was being used for different structures—especially breakwaters, piers and docks—and I succeeded in obtaining a large and valuable amount of information with respect to the same, which I have endeavored to give from my notes in the following form: I acknowledge with many thanks the aid given me by James Forrest, secretary of the Institution of Civil Engineers, London, who directed my attention to the best sources, i.e., papers presented to the institution, from which to obtain accurate and reliable data, as well as to a number of my professional friends, civil and military, who gave me the result of their experience. Concrete was extensively employed by the Romans for building purposes, but for some unexplained cause fell into disuse, and until the last few years its use has been almost entirely confined to the making of monolithic masses placed underground to act as foundation substructures for stone or brick superstructure. The French engineers appear to have been the first to discover the value of beton or concrete, for harbor works on the sea coast. At first, in its use for such works, natural hydraulic limes were employed as the cementing material with the addition of pozzolana. In the course of time, and when the manufacture of Portland cement had improved, the use of concrete in the con-