been deposited along with the calcareous matter or muddy and sandy

sediment of which these beds were originally composed.

The quantity of graphite in the Lower Laurentian series is enor-In a recent visit to the township of Buckingham, on the Ottawa River, I examined a band of limestone believed to be a continuation of that described by Sir W. E. Logan as the Green Lake Limestone. It was estimated to amount, with some thin interstratified bands of gneiss, to a thickness of 600 feet or more, and was found to be filled with disseminated crystals of graphite and veins of the mineral to such an extent as to constitute in some places one-fourth of the whole; and making every allowance for the poorer portions, this band cannot contain in all a less vertical thickness of pure graphite than from 20 to 30 feet. adjoining township of Lochaber Sir W. E. Logan notices a band from 25 to 30 feet thick, reticulated with graphite veins to such an extent as to be mined with profit for the mineral. At another place in the same district a bed of graphite from 10 to 12 feet thick, and yielding 20 per cent. of the pure material, is worked. When it is considered that graphite occurs in similar abundance at several other horizons, in beds of limestone which have been ascertained by Sir W. E. Logan to have an aggregate thickness of 3500 feet, it is scarcely an exaggeration to maintain that the quantity of carbon in the Laurentian is equal to that in similar areas of the Carboniferous System. It is also to be observed that an immense area in Canada appears to be occupied by these graphitic and Eozoon-limestones, and that rich graphitic deposits exist in the continuation of this system in the State of New York, while in rocks believed to be of this age near St. John, New Brunswick, there is a very thick bed of graphitic limestone, and associated with it three regular beds of graphite, having an aggregate thickness of about 5 feet*.

It may fairly be assumed that in the present world and in those geological periods with whose organic remains we are more familiar than with those of the Laurentian, there is no other source of unoxidized carbon in rocks than that furnished by organic matter, and that this has obtained its carbon in all cases, in the first instance. from the deoxidation of carbonic acid by living plants. No other source of carbon can, I believe, be imagined in the Laurentian period. We may, however, suppose either that the graphitic matter of the Laurentian has been accumulated in beds like those of coal, or that it has consisted of diffused bituminous matter similar to that in more modern bituminous shales and bituminous and oil-bearing lime-The beds of graphite near St. John, some of those in the gneiss at Ticonderoga in New York, and at Lochaber and Buckingham and elsewhere in Canada are so pure and regular that one might fairly compare them with the graphitic coal of Rhode Island. These instances, however, are exceptional, and the greater part of the disseminated and vein graphite might rather be compared in its

^{*} Matthew in 'Quart. Journ. Geol. Soc.' vol. xxi. p. 423. Acadian Geology, p. 662.