THE ONTARIO WOREMAN

The products of art are nothing more no eam engine as the watch-the snspensio bridge as the oil painting, are all the result o well deliberated connections of different things, Every co-operation causes the effect prolosed.
technicist, overy mechauic, according or less the experience undorstands mor articles especially belonging to his trade. The o unil, or to screw together , the to glue and blacksmith know respectively naccording older, nnd to rivet or weld. We mechanic would not need all the above montioned dif toublesome air would not compel us to use them. The atmosphere consists essentially oxygen and nitrogen, which stand in the pro process of burning, and know further the burning is merely a combination of the sub Mostly all substances are constantly burnin but the flames are not always visible-the ud othor organic matter, tryet rusting of metal the fading of colors, the tarnishing of glassloug hime-are all coused by the slow, con tinuous burning of thoso materials.
former period all stranconbence, and at d by Latin or Greek names, the chemists in "air of life," and in chowistry as well as aedicine, the very same substance, according o another matter, or just the reverse, so oxy gen not only cauacs the formation but also the
destruction of most of the products of nature. No metnls, with the oxcoption of the preci-
ous oues, (gold and gilver,) ever show a chemically clean surface. I make the assscrion, saw a chomically clean surface of irou ove by flling, or in ouy other manner, so suon by filling, or in any other manner, so soon
the atulosphere roady to oridize the clean sursaco. This oxidation is nothing olse than combination of it with the oxygen of tho st
mosphare-and this gradualy progrosses ha-
wardedly. We are are able to render the
oxidation slow by greasing, or by coating the articles with a substance which keeps the them. But, nevortheless, the oil burng upwly and must repeatedly be applield anew. We iron workers have observed vory often that noly polished pieces of engines, etc., which
were oiled for the purpose of being stored away, bogan to look yollow and brownish
after three or four weeks. This is the result of the oxidation of the oil, allowing the oxy gon to ponatrate to the iron, and causing
slight ruating of the metal at these place Water being composed of equal parts of oxy gen and hydrogen hastens oxidation. Hence man would not covor his roof with sheet would rapidly spread and eat in until the last atom of iron would be converted into rust. Zanc, copper, and the composition of bothiron and other metals. They become covered with a stratum of oxide-with a layer of rust -and this rust is a gocd preventive for keep ing the metal disoxidized, or at least rustio but very slowly.
Experience ha
Experience has taught us that metal cohere if they come in contact with surfaces entirely
free from oxide. By dipping a piece of pure after being taken out it into silver. Rubling it will only effect brighter silver-shine, the metals hold togethe firmly, and only by beating them can we doboth metals met under the above condition hoth had chemically clean surfaces. If you
dip your gold ring into quicksilver, after baving cleaned it of the always adherlug grease y means of boiling water or any acid, you wil abserve the cohesion of both motals,
Many a person who handled a brolsen thermometer has had lis gold ring converted into "quasi" silver one; beating it gently will
remove this and return it to its original color. As neither gold nor silver, on account of their oxtreme softness, are ever worked or circulated in their virgin state, without being alloyed ings cohere will prove useless. The tinning
Thete of copper is based on the same principle, both
metals are brought in contact with surface metals are brought in contact with surfaces
entirely frce from oxide. The copper is dipped in acid, taken out and inmediately put in melted tin. After taking it out of the tin the iron key into a solution of blue vitriol and on key into a solution of blue vitriol an
allow it to rmain for about five minutes, on taking it out the key will seem to be convert. ed into coppor. The iron has the property of eparating the acid and the copper, the two ingredents blue vitriol consists of. The acid
takes away the oxide of the key, and the cop per will cohere to they key free from oxide, and form a coat.
The welding
The welding of iron and the soldering of metals is based on the very same principle The iron is first heatcd to a good white hea dize ; at this temperature the oxide is renderadmost liquid but not entirely so, by hol
ing the picces together and hanmering ing the picces together and hammering on
them the oxide becomes. pressed out to some extent nnd a certain adherence is the result. but to render a good job of welding we must
wake the oxide so it can be very easily renoved. To do this we use what is called a
fux, which is in this case sand. This sub sance is molted in the white heat, and form
chenical combination with the oxide, pro ducing a very fluent liquid-which is chem ally the same as bothe glass and is easy metal surfaces to come in contact,
To weld steul with iron or steel with ste there must be a difticrent flax used. The low temperature at which the welding is to be per ormed, on account of the danger of hurring melt at all. In this case borax is used. This salt melts at a low temperature, and absorba combination which is easily pressed out by hanmering, on account of its fluency
principle, viz. : that metals coher if sa surfaces, free of oxide, come in contact. Th difference between welding and soldering is
this. By weldiug, only two picces are em. his. By welding, only two picces are em
ployell to be combined; butby soldering thre are employed, one medium, the solder metal. and the soft. To solder hard the three metals nust be mate rod hot, but the latter kind o solder requires only the solder to be hot. To follows; We file the places of both picces wo want to have cohere, in order to clean those
places as aearly as possible of the stratum o oxide, then we fasten both pieces in the man ner we desire to have thon, attach a piece o
brass at the sollering place and surround this place with plenty of clay. Now we put the whole into a charcoal fire and lucrease the hent slowly until the flame is of a blue color
At this moment we stop blowing aud lecep the object for about Then we talke it out, lny it gently down,
bave it cooled off. It must be expressely dorstood that the pieoe must be leppt iu th to be soldered. At a cortein degree of hout
$\left(1,870^{\circ}\right.$ Fahr.) the brwase, and as it is an alloy of copper and riuc, the bettor will sub-
tilizo at the rime moungit ced give a beantiful
azure blue colve to the goee.
that the heat required is obtaincd, snd
save the copper the heat must not be allowe
to inarease. Some of the melted copper run
down botween the two piecos to te solder down botween the two piecos to ke soldered and carries of the slight stratum of oxide cleaned surfaces, and after being cooled of causes the junction of the two pieces. To solder steel the medium or solder metal
uust have the property of melting at a legree and at common temperature, it mu also have considerable hardness and floxibility The best mediums for soldoring stcel are spel
ter and silver solder. The former is an allo er and silver solder. The former is an alloy 2 parts copper copper and gine, the latter of 12 parts copper, 67 parts silver, and 21 parts and are hard and tough at cominon tempers
The soft soldering is done as follows: Wo take the two metals to boaffixed and put some theng socid on the places to be soldered. For
the tin, which is iron coated with compound of tin and antimony, wo take wit the best advantage mariatic acid ; for copper,
sulphuric acid ; for brass, nitric acid. This sulphuric acid; for brass, nitric acid. This
rcmoves the greasy substances and the oxid of the metal. Now we take a heated solderin ing askes, thwith a rag to remove the allhe to remove the stratum of oxide in order th the solder may adhere to it. The point of the soldering iron is made of copper, as this meta previously stated, is less affected by the oxy gen of the atmosphere. The solder, pewter, i
an alloy of tin and lead, and melts at a low degree, (370° Fahr.,) while it shows a gre teaacity in common temperature. This melted
solder is brought between the pieces we want to fasten together by meaus of the soldering iron, and finding both surfaces perfectly freo after being cooled off the desired result is ob

THE AIRLESS MOON

Among the illusions swept away by moder science was the pleasant fancy that the moou
was a habitable globe like the earth, its surace divervified with seas, lakes, continent and islands, and varied forms of vegitation Theologians and succents gravely discussed the sentient beings, with forms and faculties like our own, and even propounded schemes for opening communication with them, in case hey existed. One of these was metrical figures on a scale so gigantic as to be visible from our planetary neighbor, on the supposition that the moon people would recogsimilar figures in immediately construct absurd as it may appear in the light of modema nowled the catalishment of this Terrestisa and Lunar Signal Service Bureau was treated slla feasible scheme, although practical diff fools of themselves, stood in the from making experiment ; but the discussion was kept at intervals, until it was discovered that there were people in the moon they must ing. Then it oeased. There ean be no life
without air. Beautiful to the eye of the distant observer, the moon is a sepulehral orb-a world of death and silence. No regetation
clothes its vast plains of stony desolation clothes its vast plains of stony desolation,
traversed by monstrous crevasses, brolien by enormous preaks that rise like gigantic temb stones into space; no lovely forms of clond
llaat in the blackness of its sky. 'There daytime is only night lighted hy a rayless sun Thero is no rosy dawn in the morniag, no dark. In daytime the solar beams are lost against the jagged ridges, the sharp pioints of
the rocks, or the stcep sides of profound abysses; and the eye sees only grotesque
hapes relieved against fantastic shadows shapes relieved against fantastic shadows
back as ink, with none of that pleasant graduatiou aud diffission of light, nose of the subtle blending of light and shadow, which make th
 formed from an illuatration representing a landscape taken in the moou in the centre o the mountrinous regions of Aristarchus. Ther The rocks reflect passively the light of the sun the craters and abysses remain wrapped in
shade, fantastic peaks rise like phantoms in shade, fantastic peaks rise like phantoms in
thicir glacial cemetery; the stars appear like pots in the llackness of space. The noon is

INFLUENCE OF COLORED LIGHT ON
NSECTS
The discussion of the changes producel in nimal and vegetable forms by the influence
ight, locality, etc., especially as comnecte
with the Darwinian hypothesis, has induced a interesting results live been derived. In on of thess experiments, lately published, a broo of enterpillars of the tortoise-shell butterfly of
Europe was divided into three lote. One. thind were plaped in a photsgraphic romm in a room lightod through blue glues, nad the
reunaiader kept in an ordinary cage in natural
light. All were fed rith their propur light. All wore fod writh their proper food,
and the third lot developad into buttartlies in
not healthy, a largo number dying before chauging; those raised in the orange, how
over, were nearly as hemlthy as the first-me blue light differed from the average form in viue light a maller the orange-brown colore lighter, and the yellow and orange. running into each other, instead of remaining distinct. Those raised in the yellow light were also mallor, but the orange-brown was replaced by salinon-color; and the blue edges of the sate. If changes so great as these can b produced in the coursc of a single experiment, it is probable that a continuance of the sanne
upon a sucerssion of individuals will develope upon a succ:ssion of
some striking results.

EXPLANATION OF THE RAINBOW.
The bor is seen when the back is turned to ward the sun. Draw a straight lino through the spectator's eye and the suu; the bow is
always scen at the same angular distance from always seen at the same angular distance from
this line. This was the great difficulty. Why should the bow be always, and at all part Taking a pen and calculating the track of every of every ray through a rain drop, Descartes found that at one particular angle the rays emerged from the drop alnost parallel to each other, being thus enabled to preserve their intensity through long atmospheric distances
at all other anglos tha rays quitted the drop divergent, and through this divergence became practically lost to the eye. The particular
angle he referred to was the foregoing angle of forty-one degrees, which observation had proved to be invariably that of the rainlow.
trades comicalif considered
Alabor strike is said to be impending. The carpenters s.
pay their board.
Shoemakers, that it takes their awl to keep them at work, and their sole dependence is in their last job.
Painters
c
literally hue-ers of wood.
Upholsterers complain that hangings hav
Boiler-makers ave
Boiler-makers aver that Congress has kep they have no chance.
Blacksmiths complain that all the forging is Tain wall street, and they have no show

The hatters have kept ahead.
The gas-fitters will go in for light work
Printers say they are tired, and can't
any longer-thais what's the matter. Bakers say they knead more, and don't like
sec so many rich loafers. Butchers complain of being asked to wor killing prices.

ought to be well paid for

Wheelwrights say that all the sporos in Cungress voted more pay before retiring and they expect to do as well as their fellocs. The paper-makers say the
that it brings them to rags.

DISEASES OF ARTISATS
Gilders are subject to mercurial affections. They suffer from giddiness, asthma, and very frequently from partial paralysis, which often might be supposed, they frequently suffer from unpleasant
Miners in the quicksilver mines suffer from ertioo, palsy and convulsions, and sarvic enerslly but a few months.
Pottery glaziers who nse leal largely, saffer vith the addition of dropsy, loss of teeth a with the addition of dropsy, loss of teeth. and of the arms, is a common effect of poison from lend. Con
Glass-blowers are the victims of those affoc tions produced by sudden vicissitudes of temgenerally thin and delicate
Stonecutters inhale the sharp particles which are ayt to produce disease of the lungs Plasterers suffer from the gases disengage rery much from labored breathing, have way very much from ladored breathing,
palliil visages, and they digest badly.
Filers are short.lived. Whether the meta
be hriss or iron, the fine sharp rarticles maki
ho:r way into the lungs, where they develo liscasc,
sumption
nchanged atmoosphere, whilo their a short, filled with the irritating dust of the material All in door occupations, with the present or less mischiovous. Out-door occupations farming, gardening, and other similar employ sion of the food question, the best opportunity for health and long lifo. Driving a stage or expreas waggon, with frequent laving for the
delivery of packanges, travelling throngh the
country an foot as a boak acent-theso and einilhar cmployments are,
to furniag' and gardoning.

FACTS IN PHYSICS
Gold beatorn, by hammoring, reduce gold to.
leaves so thin that 283,000 must be laid on arch other to produce the thicknems of an inch. They are so thin that, if formed in a book, 1,500 would occupy the space of a eingle leaf A grain of blue
gallon of water, so that in erer, will tinge color may be perceived; and a grain of muit will scent a room for twenty years.
A stone which on land requires the strength of two men to lift may be lifted in the water by one man.
An immense weight may be raised a ehort distance by tightening a dry rope between it and a support, and then wetting the rope. The
moisture imbibed into the rope by capillary attraction causes it to become shorter A rod of iron which, when cold, will pass
through a certain opening. when heated expands and becomes ton thick to heass. the tirc, or rim of a coach wheel, when heated goes on loosely, and when cooled it pins the wheel most tightly:
One pint of water converted into stenm, fills apace of nearly 2,000 pints, and raises the piaton of a steam congine with a force of many thousand pounds-it may afterwards be condensed and re-appear as a pint of wate
Sound travels in water, about fou Sound travels in water. about four times
ander, and in solids from ten to twenty times quicker than in air.

THE PHILOSOPHY OF ACCURATE

Too much stress cannot be laid upon the uudamental importance of perfect command over thought. How many a student finds a lack of this power the chief hindrance to pro-
gress : How many a page must be re-read, how many a lesson conned over and over to
compensate for lapses of thought. In the possession or nbsence of this power over mind
lies the chief difference between mental strength and mental weakness. Some men ing little clows plays with a hammer, striz ing ittle blows here, there, anywhere, at any
object within reach. The action of a strong mind may be compared to the atone-breaker's sledge hammer, dealing stubborn blows suc cessively upou one spoi till the hard rock cracks and fields. The power to classify and arrange ideas in a proper order is one that
comes more or less slowly to cven the best of minds. In proportion as the faculty is strengthWhed, desultory and wasted effort diminishes and can begin where it left off without going over the whole ground again to take up the
threads of its ratiocinations. Concentration and system are thas seen to be the chief ele. ments in the art of thin'ing. To cultivate the first, constant watchfulness to detect the least waudering, and the immediate exercis
of the will to call back and hold the mind upon the subject under consideration, should be vigilantly exercised. To secure the latter, the practice of analyzing and constituting the and then in their relations to each other, is discipline to which every young mind should discipline to which every young mind shouk
be subjected, and which, we are sorry to say, is much neglected in most methods of instruc

SOLOMON'S TEMPLE AND THE Pramidis

If we regard, says a writor in the Edin hater devoted to the work of the 'remple as elect produced on the mind by its appa comparisons: The great leugth of the wall of fhe sanctuary is rather more than double tbat
of the great Pyramid. Its height, from the the northern angles, was nearly a third of that of the Egyptian structure. If to this ff solid wall be addel the degcout of ono hut Irell and fourteen feet to the bed of the Ke ron, and the further elevation of one hum dred anid sixty feet attained hy the pinnacl of four hundred and twenty-six feet, which is ouly fifty-mine fect less than that of the great Pyraund. The aren of the face of the castern the pyramii. Thus the maguitude of the noble Sanctuary of Jerusalem far exceeded
thate of any other temple in the world. Two amphithentres of the size of the Coliseum wull left room to spare. The coliseum is said thive scated eigaty-seven thousamd specta nore in its arcua and passages. For such le, the to le, the space for vach porsmn must have been
limitsd to seventeen loy twenty inches. Ai lowing two culbits each wh, on fon

