where R_1 is a rational function of the primitive u^{th} root of unity w and of the known quantities involved in the coefficients of θ ; and, z being any integer, R_s is derived from R_1 by changing w into w^s . Putting

$$x_{s+1} = R_0^{\frac{1}{n}} + w^s R_1^{\frac{1}{n}} + w^{2s} R_2^{\frac{1}{n}} + \dots + w^{(n-1)s} R_{n-1}^{\frac{1}{n}}, \tag{2}$$

the *n* roots of the equation f(x) = 0 are obtained by giving *s* in x_{s+1} successively the values $0, 1, 2, \ldots, n-1$. Therefore $nR_0^{\frac{1}{n}}$ is the sum of the roots of the equation; consequently, $R_0^{\frac{1}{n}}$ is rational. An equation of the type

$$\left(R_{z}R_{1}^{-z}\right)^{\frac{1}{z}} = F(w) \tag{3}$$

subsists for every integral value of z, F(w) being a rational function of w and of the known quantities involved in the coefficients of θ . As w may be any one of the primitive n^{th} roots of unity, if the general primitive n^{th} root of unity be w^{e} , we may suppose w in R_1 to be changed into w^{e} . The n roots of the equation f(x) = 0 will then be obtained by giving t, in the expression

$$R_0^{\frac{1}{n}} + w^t R_e^{\frac{1}{n}} + w^{2t} R_{te}^{\frac{1}{n}} + \text{etc.}$$
 (4)

successively the values $0, 1, 2, \ldots, n-1$. Abel's investigation shows that the form of the function F'(w) in (3) is independent of the particular primitive n^{th} root of unity denoted by w. Hence the change of w into w^{e} causes equation (3) to become

 $(R_{\epsilon s}R_{\epsilon}^{-s})^{\frac{1}{n}} = F(w^{\epsilon}), \tag{5}$

the symbol F having the same meaning for every value of e.

Fundamental Element of the Root

§6. Because R_0 , R_2 , etc., are derived from R_1 by changing w into w^0 , w^2 , etc., the root x_1 can be constructed when R_1 is given. We may therefore call R_1 the fundamental element of the root. Examples of the way in which the root is constructed from its fundamental element will present themselves in the course of the paper.

A Certain Rational Function of the Primitive nth Root of Unity, n being an Odd Prime Number.

§ 7. Taking n an odd prime number, there is a certain rational function of the primitive n^{th} root of unity w, of which we shall have occasion to make

ne primitive , of an irreto make use primitive n^{th} of F(w) = 0,

irreducible

on of degree

ble solvable

ses in which

nes, or four 8-§64).

and h to be

tc. = 0. If f unity, w is and $\psi(x) = 0$ $\psi(x) = 0$ is inder. This he equation

degree, and (1). It is hird edition)