+n(n+k).

ms:

ble us to sum

um?

product:

m?

ely continued

4.	$\frac{x-a}{\frac{1}{x}-\frac{1}{a}} \text{as } x \text{ appr}$	roaches	s a ii	ndefinite	ely.		
5.	$\frac{x^2 - a^2}{x^3 - a^3}$	66	"	"			
6,	$\frac{\frac{a}{x} - \frac{x}{a}}{\frac{x}{x} - a} \dots \dots$	"	"	"			
7.	$\frac{(x+a)^n - (x-a)^n}{a^{n-1}}$	$\frac{x^{n}}{2}$ as x	iner	eases in	definitel	ly.	
8.	$\frac{(1+ax)^3}{(1+bx)^3}$	** **		66	66		
9.	$\frac{(1-ax)^n}{(1-bx)^n}$	" "		"	"		
10,	$\frac{1^2 + 2^2 + 3^2 + 4^2}{n^3}$	+	n	a - as <i>n</i> inc	reases in	ndefinitely.	
11.	$\frac{1^3+2^3+3^3+\ldots}{n^4}$	• • +	n^3	** **	"	"	
12.	$\frac{1^m + 2^m + 3^m + 4}{n^{m+1}}$	m + .	• • •	$+ n^m$	"	66	

13. The first term of a series is $\frac{1}{3}$, the second $-\frac{1}{6}$, and each succeeding term one half the sum of the two which precede it. To what limits will the *n*th term and the sum of the series approach as *n* increases indefinitely?

14. Find the limit toward which the nth term approaches when

\mathbf{First}	term	=	a + 2b;	second	term	=	a-b;
66	"	=	1;	66	66		$\frac{1}{2};$
" "	"	-	a;	"	"		b;

each term after the second being half the sum of the two preceding terms.

15. The first term of a series is a, the second b, and each following one the geometrical mean of the two preceding it. Show that, as n increases indefinitely, the nth term approaches the limit $a_{b}b_{c}$.

541