was laid on the table. It gavo a satisfretory explamation of an imperfect entry in the Society's accounts,
'The Bye-laws ol' the Richmond Agricultural Society were submittod.;

Tho Board then adjomened.

CONSTIIUTION OF WEYMOUTH agriculitulal society, DIGBY COUNTY.

1. This Suciety shall be kaown as the Weymouth serricultural socicty.
2. The oflicers of this siociety shall consist of a Prosident, Vice-President, Secretary, Treasurer, and a Boad of five Jirectors, all of whom shall be chosen ammally.
3. The object of this Society shall bo the pronution and encoungement of agriculture among its members, according to the spirit of the Chapter of the Revised Stututes.
4. This Society shall hold its regular meetings quarterly on the first Satuadiays in Mareh, June and September. Special meetings may be called atany timo, when required, by the l'resident, upon one week's notice thereof being given.
5. The finds of this Society shall be expended in such manner as shall be determinel by a majority of members present at a regular meeting, but the Directors shall be empowered to transact any business which they may consider necessary to the prosperity of the Society, such business nut being in opposition to any direct voto of the Suciety ut a regular meeting.
6. All funds in the hands of the Treasurer, when not required for immediate use, shall be deposited in the Savings' Bunik to the credit of the Society, unless the Directors ordor the sause to be otherwise invested.
7. All seeds, implements, \&c., imported by the Society shall be sold to the members at wholesale cost price, the Society paying the expenses of freight upon the same.
8. These rules may be added to, amended, or expunged at any regular meeting by a troothirds vote, providing such amendment bo in conformity with the law.

PHOSPHATES.

Part of an Address at the Newo York State Grange, by Prof. G. C. Culduell, of Cornell Unitiversity.
If there were time for it, I might show that lime and potash, ingredients of the food of plants that are always present in the plant, and in the case of the latter especially, and in quito large and unifor.n proportions in some parts of the plant, aro exported in much smaller quantities
than the phosphoric acid, in the plants ordinarily sold. Phos horic acid appears to be the ingredient oi plant food above all others that wo have been carrying off from the soils of our furms in the courso of the fifty years or moro that wo have been cultivating them, and it is only within the last fow years that we have given any thought to rephacing the luss. In England, whero soil has been under cultivation for a much longer period, thay began to feel the deficiency of phosphates many years ago, and wo are bow beginning to follow in their trick. In Morton's Cyclupadia of Agricullare wo aro told how the farmess of linglame began long ago to be discouraged. "'heir soils had been deterionating for many years, under somewhat the sime wastelial system of cultivation, evidently, that has been so largely followed in this country, especially in the west. A point was reached where, whatever system the firrmer followed, his crops wero stealily diminishing ; in some places the condition of things was so bad that wheat was not included at all in the rotation. It was the introduction of bone manure, just at this point; that saved the agriculture of Eugland, and entirely changed tho aspect of aflairs.
From the consideration of the relation between phosphate in tho soil and the phosphato in the crops that we allow to leave the farm, we pass naturally to the consideration of the important subject of p hosphates is manures. I should, however, wear your patience all out, if I should attempt to consider all the forms in which these manures are offered to the farmer. I must, therefore, confine my attention to the most important one, superphosphate of lime. This superphosphate, about which so much is said now-a-days -what is it? Befure I can answer this question satisfactorily, I must digress a little to explain a very interesting property of phosphoric acid, upon which the differenco between a superphosphate and an ordinary mineral phosphate, or the phosphate in bones, is based.

In the carly part of my lecture I made the statement that there are several phosphates of lime, containing with the same quantity of acid different quantities of the base. Three of these phosphates are very interesting, from an agricultural point of view. Starting with the one which I havo already described as the most common, and the only one found in the rocks, and oontaining for every one hundred and forty-two parts of the acid one hundred and sixty cight parts of line, we can prepare from that, by suitable processes, another phosphate containing one thind less lime, or one hundred and twelve parts ; and from that another can be obtaincd containing still another third leas lime, or only fifty six
parts. The first phosphate, the starting point, wo mis call, as alrendy stated, tho tri-calcic phosphate, the substance calcium being one of the constituents of lime. The sccond wo may call di-calcic phosphate, and the third mono-calcic phosphate. The scond compound. contains twice as much lime, or twice as much calcium, as the third or last mentioned one, and hence tho the term di-calcic, amd the ono first mentioned contains three times as much lime or calcium as the third, and hence the terin tri-calcic phosphate.

In examining the properties of these different phosphates, we find a difference that has an important bearing in respect to their usefulness as fertilizers. The tri-calcic phosphate is quite insoluble in Water, the mono-calcic phosplate is very soluble, and the di-calcic phosphate stamels between the other two as to solubility. This is an important difference, becanse plant-food in the soil must first be dissolved before it can enter at tho roots, and the more soluble a constituent of plant-foot is in a fertilizer the more valuable it is, because a larger proportion of it becomes accessitle to the plant during the season of growth. No constituent of the soil, or any fertilizer that is over applied to the soil, is absolutely insoluble, and if time enough is allowed the whole of it may be taken into solution; but more than thio is always required for remunerative plant growth. There must be a greater rapidity of solution, so that the wheat crop can, during the growing season, easily ïnd its eighteen pounds of phosuhoric acid, or the Indian corn its fifty pomuds or more, and the turnip crop its one hundred and forty or fifty pounds.

All three of the calcic phosphates which I have described are to be found, at least in nearly all cases in our ordinary superphosphates. The tri-calcic phosphate, from its insolubility, is known as insoluble phosphate, the mono-calcic phosphate as soluble phosphate, and the di-calcic salt as the reverted phosphate, because it is supposed to be produced by reversion of the mono-calcic or soluble phosphate back to the dicalcic as the superphosphate becomes old. In reports of analyses of phosphates, the turms soluble, reverted and insoluble phospincric acid are commonly used, instend of soluble, reverted, and insoluble phosphate. It is hardly necessary to ald thit the larger the proportion of soluble acid a superphosphate contains, the mure valuably it is. In regard to the relativ: value of the three conditions of the acid, soluble, reverted and iusoluble, there is some variety of opinion among chemists, for the values are hard to fix with any degree of accuracy, but reverted acid is generilly considered to bo worth from two to threo times, and soluble acid frou three to four

