Young : Forms, Necessary and Sufficient, of the Roots of

where k_1 is a rational function of w, and k_c is what k_1 becomes by changing w into w^e . By putting e = 1 in (85),

$$R_1^{\overline{\tau}} := A_1 \left(\phi_\sigma^\sigma \psi_{\tau}^{\tau} \dots X_\delta^\delta F_{\theta}^{\delta}
ight)^{rac{1}{n}}$$

Taking this in connection with the second of equations (87),

$$(R_v R_1^{-v})^{\overline{v}} = w^a (A_v A_1^{-v}) Q (F_{\sigma}^{-v\sigma} X_{\delta}^{-v\delta} \dots)^{\overline{v}} \{(\phi_{v\sigma}^{\sigma} \phi_{\sigma}^{-v\sigma})(\psi_{v\tau}^{\tau} \psi_{\tau}^{-v\tau}) \dots\}^{\frac{1}{n}}.$$
(89)
like manner, by putting a for a in (27) and (41)

In like manner, by putting c for e in (85), and taking the result in connection with the first of equations (87),

$$(R_{\sigma\nu}R_{\sigma}^{-\nu})^{\overline{n}} = w^{\tau}(A_{e\nu}A_{\sigma}^{-\nu})Q(F_{c\beta}^{-\nu\beta},\ldots)^{\frac{1}{n}} \{(\phi_{\sigma\nu\sigma}^{\sigma}\phi_{c\sigma}^{-\nu\sigma})(\psi_{c\nu}^{\tau}\psi_{c\tau}^{-\nu\tau})\ldots\}^{\frac{1}{n}}.$$
(90)

From (89) compared with the first of equations (88), and from (90) compared with the second of equations (88),

$$k_{1} = w^{a} \left(A_{r} A_{1}^{-v}\right) Q \left(F_{\beta}^{-v\beta} \dots \right)^{\frac{1}{v}} \left\{ \left(\phi_{\nu\sigma}^{\sigma} \phi_{\sigma}^{-v\sigma} \right) \left(\psi_{\nu}^{\tau} \psi_{\tau}^{-\nu\tau} \dots \right)^{\frac{1}{n}} \right\}$$

$$k_{o} = w^{r} \left(A_{ov} A_{o}^{-v}\right) Q \left(F_{c\beta}^{-v\beta} \dots \right)^{\frac{1}{n}} \left\{ \left(\phi_{\sigma\nu\sigma}^{\sigma} \phi_{\sigma\sigma}^{-v\sigma} \right) \left(\psi_{\sigma\nu\tau}^{-\nu\tau} \psi_{\sigma\tau}^{-\nu\tau} \right) \dots \right\}^{\frac{1}{n}} \right\}$$

$$(91)$$

and

By §9, because ϕ_{σ} is of the same structure as the expression (8),

$$(\phi_{v\sigma}\phi_{\sigma}^{-v})^{\frac{1}{r}} = q_{\sigma},$$

 q_{σ} being a rational function of the primitive sth root of unity w^{σ} . And, since it appeared from the reasoning in §9 that the nature of the function does not depend on the particular primitive sth root of unity denoted by w^{σ} , we have at the same time $(\phi_{cv\sigma}\phi_{\sigma\sigma}^{-v})^{\frac{1}{\sigma}} = q_{\sigma\sigma}$,

 $q_{\sigma\sigma}$ being what q_{σ} becomes when w is changed into w^{σ} . Therefore, because $s\sigma = n$,

$$egin{aligned} & (\pmb{\phi}^{\sigma}_{er} \pmb{\phi}^{-r\sigma}_{\sigma})^{rac{1}{n}} = g_{\sigma} \ & (\pmb{\phi}^{\sigma}_{er\sigma} \pmb{\phi}^{-r\sigma}_{\sigma})^{rac{1}{n}} = q_{c\sigma} , \ & (\psi^{r}_{rr} \psi^{-rr}_{r})^{rac{1}{n}} = q'_{r} \ & (\psi^{r}_{rr} \psi^{-rr}_{r})^{rac{1}{n}} = q'_{r} \end{aligned}$$

Similarly, and

and

where q'_{τ} is a rational function of w^{τ} , and $q'_{\sigma\tau}$ is what q'_{τ} becomes when w is changed into w^{σ} . Therefore, from (91),

$$k_{1} = w^{a} \left(A_{v} A_{1}^{-v}\right) Q \left(F_{\beta}^{-v\beta} \dots\right)^{\frac{1}{n}} \left(q_{\sigma} q_{\tau}' \dots\right)$$

$$k_{c} = w^{r} \left(A_{cv} A_{c}^{-v}\right) Q \left(F_{c\beta}^{-v\beta} \dots\right)^{\frac{1}{n}} \left(q_{c\sigma} q_{\tau}' \dots\right)$$

$$(92)$$

and

But again, because $b\beta = n = yv$, and y is not a multiple of b, v is a multiple of b. Therefore $v\beta$ is a multiple of $b\beta$ or n. Therefore $F_{c\beta}^{\frac{-v\beta}{n}}$ is a rational

258