Under s drawn re angle sideand other, theticai 1 y ? at they knowroperty barallel of the these? acy be
ternato
n the nd the 2 loes gested t one clid's
rallel
lines gle.
y are rove rove
ples.
right
lelogram, when its diagonala bisect each other: and when litd diagonals divide it into four triangles, which are equal, two and two, vis. those which have the samo vertical angles.
79. If two straight lines join the extrepities of two parallel straight lines, but not towards the same parts, when are the joining lines equal, and when are they unequal?
80. If either dianeter of a four-sided figure divide it into two equal triangles, is the figure necessarily a parallelogram? Prove your answer.
81. Shew how to divide one of the parallelograms in Euc. 1. 35, by straight lines so that the parts when properly arranged shall make up the other parallelogram.
82. Distinguish between equal triangles and equivalent triangles, and give examples from the First Book of Euclid.
83. What is meant by the locus of a prent? Aa'uce instances of loci from the first Book of Euclid.
84. How is it shewn that equal triang es :tpora the same base or equal bases have equal altitudes, whether the, ure situnted on the same or opposite sides of the same straight line?
85. In Euc. 1. 37, 38, if the triangles are not , wards the same parts, shew that the straight line joining the vertices of the triangles is bisected by the line containing the bases.
86. If the complements (fig. Kuc. I. 43) be squares, determine their rolation to the whole parallelogram.
87. What is meant by a parallelogram being applied to a straight line ?
88. Is the proof of Euc. 1.45 , perfectly general?
89. Define a square without including superfuous conditions, and explain the mode of constructing a square upon a given straight line in conformity with such a definition.
90. The sum of the angles of a square is equal to four right angles. Is the converse true? If not, why?
91. Coneeiving a square to be a figure bounded by four cqual straight lines not necessarily in the same plane, what condition respecting the angles is necessary to complete the definition?
92. In Euclid 1. 47, why is it necessary to prove that one side oi each square described upon each of the sides containing the right angle, should be in the same straight line with the other side of the triangle?
93. On what assumption is an analogy shewn to exist between the product of two equal numbers and the surtace of a square?
94. Is the triangle whose sides are $3,4,5$ right-angled, or not?
95. Can the side and diagonal of a square be represented simultineously by any finite numbers?
96. By means of Euc. 1. 47, the square roots of the natural numbers, $1,2,3,4$, \&c. may be represented by straight lines.
97. If the square on the hypotenuse in the fig. Euc. 1. 47, be described on the other side of it: sliew from the diagram how the squares on the two sides of the triangle may be made to cover exactly the square on the hypotenuse.
98. If Euclid y. 2, be assumed, enunciate the form in which Euc. I. 47 may be expressed.
99. Classify all the properties of triangles and parallelograms, proved in the First Book of Euclid.
100. Mention any propositions in Book 1. which are included in mo:0 general ones which follow.

