METALLURGICAL PRACTICE ON THE WITWATERSRAND

By F. L. Bosqui

(Continued from last issue)

Classification.

The necessity of providing a specially thickened and classified pulp for tube mills gave fresh impetus to the study of classification, which hitherto had been chiefly confined to the rather crude methods in vogue of separating sand from slime. The earliest classifiers were of the inverted pyramid type, a first series of spitzlutten with small pockets being designed to eliminate the coarse sand and concentrate, which were collected and given a special treatment, and a second series of much larger pockets being used for separating sand and slime. A further separation of sand and slime took place in the sand collectors, the overflow of which passed to a series of return-sand spitz-kasten for the further elimination of sand, the final overflow product from the latter going to the slime plant.

When tube mills were introduced in 1904, the coarse product was no longer separately collected but run to these mills; and the apparatus for classification gradually took the form of a simple series of spitzkasten, provided with underflow nozzels of different apertures. This underflow passed to the tube mills, while the overflow went direct to the sand collectors, in which the slime was separated from the sand and discharged by means of adjustable overflow weirs into so-called return-sand classifiers, which in turn discharged their overflow to the slime plant.

The first step in the much-needed improvement in classification was taken in 1908, when Messrs. Caldecott and Smart developed what is known as the diaphragm cone, now generally employed for thickening and classifying tube-mill pulp. This consists of a sheet steel cone, 5 to 6 ft. in diameter and 7 to 9 ft. deep, provided near the apex with an iron disk or diaphragm. This disk is 8 to 10 in. in diameter, and the annular space between it and the sides of the cone is 2 to 21/2.

is 2 to 21/2 in.

The proper action of this diaphragm is obtained only when the cone is full of solids. The mass of sand in the cone then assumes a concave surface, the deepest point from the plane of the overflow edge being immediately under the central pulp inflow. At this point, where the coarsest and heaviest product accumulates, the surface is seen to be in a state of slow continuous subsidence. This slowly subsiding mass of heavy material, conceivably irregular or conical in shape, may be presumed to act as a descending wedge, retarded in its downward course by the supporting diaphragm; while the finer sand, with the slime, tending to adhere to the sides of the cone, would appear to be literally pushed aside and crowded upward by the central column, so reaching the overflow rim and escaping. The slow, thick stream issuing from the apex carries only from 26 to 30 per cent. moisture, and a minimum of the fines which it is desirable to exclude from the tube mill.

These cones have a large capacity, and, barring the one disadvantage of vertical height required, may be considered the most simple and suitable means yet devised for providing all the conditions requisite for a tube-mill feed that will enable the mill to work at highest efficiency. This device is now used either as the sole means of classifying mill pulp, or in con-

junction with hydraulic classifying cones. An important aspect of this innovation was its having made possible the introduction, in 1907, of the Caldecott sand-filter table; a device whose success obviously depended upon securing a suitable thickened pulp, containing a small amount of water and a minimum of slime. The primary object of this appliance, as explained by the inventor, was to obtain sand in such a condition for treatment as would warrant the elimination of sand-collecting vats, which could then be used for treatment purposes. Obviously, the effect of this was to increase very considerably the capacity of a leaching plant.

Single treatment of sand—Metallurgically considered, however, the significant feature of this appliance was its revival of the old question of the possibility of single treatment of sand after proper classification. In this connection it is interesting to note a prediction made by Charles Butters in 1895, that "the whole question of double treatment really resolved itself into a matter of filling the vats with clean stuff, and he was confident that the day would come when there would be no double treatment." The first notable success in America in collecting and treating sand in the same vat was at the Homestake mill; but in Africa, with the single exception of the East Rand Proprietary, double

treatment has been retained until quite recently.

In 1910, when the new plant for the Modderfontein B. mine was being designed, I undertook to evolve a simpler method than the filter table for obtaining a clean sand, with a view to the subsequent elimination of separate collecting tanks. This classifying plant consists of eight small primary hydraulic cones, 2 ft. 9 in. in diameter and 2 ft. 6 in deep designed as concentrators for insufficiently ground sand particles from the tube mills. The overflow from these gravitates to four larger hydraulic cones, 8 ft. in diameter by 6 ft. 9 in. deep, which effect a very satisfactory separation of sand from slime, the overflow gravitating direct to the slime collectors. The underflow of the large cones is evenly distributed in the collectors by the Butters and Mein distributor, a device recently revived on the Rand Mines group after several years of disuse

This system, in view of the possibility of treating a considerable amount of fine (-200) sand in the Butters filter, was found to be well adapted to this mode of filtration, the correct proportion of fine sand and slime being easily obtainable. Moreover, an evenly distributed sand charge was secured, free from lumps and layers of slime. This system has been adopted by other mines of the Rand Mines group; and in newer plants has, with a few modifications, superseded the primitive method of charging sand and slime together into collectors and depending upon a Kaffir and a movable hose for even distribution.

At the Crown Mines, an improved hydraulic attachment for cone classifiers was devised by H. Brazier, the reduction foreman at "C" mill. This consists of an adjustable nozzle for discharging water in proximity to the apex of the classifying cone in the form of a thin circular sheet, directed horizontally between the nozzle and the cone. By means of this system of cone separators, the classification of sand is