Mathematies.

CORRESPONDENCE.

PROBLEMS, SOLUTIONS, ETC.
No. 63.-Sent by A.B., St. C. St., Montreal.
If $\frac{x^{2}+2 x+1}{x^{2}-2 x+3}=\frac{y^{2}+2 y+1}{y^{2}-2 y+3}$ show that each fraction is equal to $\frac{x y-1}{x y-3}$.

Solution by the Editor: If $\frac{a}{b}=\frac{c}{d}$, then each $=\frac{a-c}{b-d}$ acd. $\therefore V=\frac{x^{2}-y^{2}+2(x-y)}{x^{2}-y^{2}-2(x-y)}=\frac{x+y+2}{x+y-2}=\frac{x^{2}+2 x+1}{x^{2}-2 x+3}$
Apply $\frac{a}{b}=\frac{c}{d}$, then $\frac{a+b}{a-b}=\frac{c+d}{c-d}$ and we have $\frac{x^{2}+2}{2 x-1}=\frac{x+y}{2}$, whence $x+y=2(x y-2)$. Substitute this and $V=\frac{x+y+2}{x+y-2}=\frac{2 x y-2}{2 x y-6}=\frac{x y-1}{x y-3}$ Q.E.D.

No. 64. By L. M. Stevens, Westerly, R.I.-Let ACB be a triangle, and AFB, BDC, and CEA equilateral triangles on its sides, all turned out wards. Let FB and EC, produced, meet D^{\prime}, DC, and FA at E', EA and DB at F'. Show that the lines through $\mathrm{DD}^{\prime}, \mathrm{EE}^{\prime}$, and FF^{\prime} are parallel.
[This property was recently discovered by Prof. Morley, of Haverford College, by means of complex variables, and it is sent to the Journal by his permission. A geometric demonstration is desired. -Ed.]
solution by the proposer.

From the diagram,

$$
\begin{gathered}
z+b+c=z+h+k=1 / 3 \pi \ldots(1) \\
\therefore b+c=h+k=a \ldots(2)
\end{gathered}
$$

Now, $a+a=y-b=B-c=1 / 3 \pi \ldots(3) ;$
Adding. $\quad a+B+y+a-(b+c)=\pi \ldots$ (4);
or by (2), $\quad a+B+y=\pi \ldots$ (5).
But $\quad a+x+y=\pi \ldots$ (6).

$$
\therefore x=B ; y=y ; \text { and } z=a .
$$

That is, the triangles $A C E{ }^{\prime}, \mathrm{CBD}^{\prime}$, and $A F^{\prime} \mathrm{B}$ are similar.
$\therefore \mathrm{CE}^{\prime}: \mathrm{CA}=\mathrm{CB}: \mathrm{CD}^{\prime}$, or $\mathrm{CE}^{\prime}: \mathrm{CE}=\mathrm{CD}: \mathrm{CD}^{\prime}$. Hence the triangles CEE^{\prime} and CDD^{\prime} are similar ; and, consequently. $\quad \angle \mathrm{CEE}^{\prime}=\angle \mathrm{CDD}^{\prime}$.
That is, EE^{\prime} and DD^{\prime} are parallel: Similarly ID^{\prime} and FF^{\prime} are proved to be parallel.-N.E. Journal of Education, Boston.

No. 65.-Sent by W. H. Fletcher, Woodstock.

The following solutions of Nos. $53,56,57,58$, 59 and 60, were sentin by Miss Ethel Barker, Jameson Avenue Collegiate Institute, Toronto.

NO. 53.-SOLUTION.

Suppose $x=$ number minutes after 10 .
Then hour hand has travelled $\underset{12}{ } \mathrm{x}_{12}$ spaces
\therefore Distance from $12=10-\frac{x}{12}$
\therefore Space between hour and minute hands $=$ $10-\frac{\mathrm{x}}{12}$

$$
\begin{aligned}
& \therefore 50+\frac{x}{12}-\left\{10-\frac{x}{12}\right\}=\mathrm{x} \\
& \therefore 480+2 \mathrm{x}=12 \mathrm{x} \\
& 10 \mathrm{x}=480 \\
& \quad \mathrm{x}=48 \text { minutes after } 10 \text { o'elock. } \\
& \text { no. 56.-solution. }
\end{aligned}
$$

 altitude of an equil. \triangle.
It is required to construct the Δ.

At B make an angle of $60^{\circ}, \mathrm{ABF}$, and at A erect a $\perp \mathrm{AD}$ to AB .
Trisect $\angle \mathrm{DAB}$ and bisect \angle of 30° nearest AB by Ac.

From C draw $\mathrm{CE} \perp$ to BF , meeting AB in E .
From CF cut off $\mathrm{GB}=\mathrm{CB}$, join CE .
$\angle \mathrm{CAB}=15^{\circ}, \angle \mathrm{CBA}=60^{\circ}$
$\therefore \angle \mathrm{ACB}=105^{\circ}$
$\angle \mathrm{BCE}=90^{\circ}$
$\therefore \angle \mathrm{ECA}=15^{\circ}$
$\therefore \mathrm{EC}=\mathrm{EA}$.
$\mathrm{EC}=\mathrm{EC}$
In \triangle 's EGB, $\mathrm{ECB}, \quad \mathbf{C G}=\mathrm{CB}$ $\angle E C G=\angle E C B$
$\therefore \mathrm{EG}=\mathrm{EB}$
and $\angle \mathrm{EGC}=\angle \mathrm{EBC}$

$$
=60^{\circ}
$$

$\therefore \triangle E C B$ is equiangular
$\therefore \triangle \mathrm{EGB}$ is equilateral and $\mathrm{EC}+\mathrm{EB}=\mathrm{AB}$
$\therefore \triangle \mathrm{EBC}$ is the required equil. \triangle. no, 57.--solution.

Let $A B$ be the given difference of a side and the altitude of an equil. \triangle.

It is required to construct the Δ.
On $A B$ describe an equil. \triangle, and produce a side, $B C$, to C.

From A draw $A D \perp A B$.
Trisect the complement of $\angle \mathrm{DAB}$ and bisect the \angle of 30° nearest AD.

From C draw $C E \perp C B$, meeting $A B$ in E.
From BC produced cut ofl $\mathrm{CH}=\mathrm{CB}$, join EF .
$\angle \mathrm{ABC}=60^{\circ}, \angle \mathrm{CAB}=105^{\circ}$
$\angle \mathrm{ACB}=15^{\circ}$
$\angle \mathrm{BCE}=90^{\circ}$
$\angle \mathrm{ACE}=75^{\circ}$
and $\angle \mathrm{CAE}=75^{\circ}$
$\therefore \mathrm{EC}=\mathrm{EA}$
$\mathrm{EC}=\mathrm{EC}$
In \triangle 's ECB, ECF, $\quad \mathbf{C B}=\mathrm{CF}$
$\angle \mathbf{E C B}=\angle \mathbf{E C F}$
$\therefore \mathrm{BE}=\mathrm{FE}$
and $\angle \mathrm{CBE}=\angle \mathrm{CFE}$
$\therefore \triangle \mathrm{EFB}$ is equiangular
$\therefore \triangle E F B$ is equilateral:
and $E B-E C=A B$
$\therefore \triangle \mathrm{EFB}$ is the required equil. \triangle
no. $68,-$ solution.

